

Contract No. PSC 12-630-4000-0001

Deliverable A4

Technical Plan - Technical

Architecture Plan

Appendix C – FAST4J Batch

Version 1.0

 ASPEN Batch

Architecture Guide

Document Control Information Page 2 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

Document Control Information

Document Information

Document Identification ASPEN Batch Architecture Guide

Deliverable Name and Task

Item

Sub Task Item

Project Name New Mexico ASPEN

Client State of New Mexico - Human Services Department

Document Author Prasad Yarlagedda

Document Version 1.0

Document Status Pending

Date Released April 27 2012

Response Due Date

File Name
Deliverable A4_Technical Architecture Plan-Appendix C FAST4J
Batch_v1.0.doc

Document Edit History

Version Date Additions/Modifications Prepared/Revised by

1.0 04/17/2012 Prasad Yarlagedda

Document Review/Approval History

Date Name Organization/Title Comments

 ASPEN Batch

Architecture Guide

Table of Contents Page 3 of 41 New Mexico ISD2R

April 17, 2012 ASPEN Batch Architecture Guide

Table of Contents

1. Introduction ... 4
1.1 Batch Process ... 4
1.2 Batch Framework .. 4

1. FW_BATCH_PARAMETER_CONTROL ... 4
2. Generic Batch Program Flow .. 4
3. Batch Framework Tables .. 8
4. Sample Sequence Diagrams .. 11
5. Debugging of Batch Jobs .. 14
6. Prefetch Logic .. 14

2. ASPEN Batch Job Standards .. 16
2.1 File Types .. 16
2.2 Naming Standards ... 16

1. Shell Scripts Naming standards .. 16
2. File Naming Standards ... 17

2.2.2.1 Construction of the output file names ... 17
2.2.2.2 Construction of the input file names ... 17

3. SQL Standards and Tuning Tips ... 18
4. Checkpoint- Restart .. 24

2.2.4.1 Understanding Checkpoint-Restart .. 25
2.2.4.2 Abstract Batch... 25
2.2.4.3 On Commit ... 25
2.2.4.4 Output File .. 25
2.2.4.5 Stop(”EN”) .. 26
2.2.4.6 getAdjustedMaximumRunNum() of the batch Controller .. 26
2.2.4.7 Reference Table Entry ... 26
2.2.4.8 Implementing Checkpoint Restart .. 26
2.2.4.9 Control Table .. 30

5. Parallel Run .. 31
2.2.5.1 Understanding Parallel Run ... 31
2.2.5.2 Parallelism on the Java end or on the Database end .. 31
2.2.5.3 Abstract Batch... 32
2.2.5.4 Pilot Program .. 33
2.2.5.5 Partitioning table ... 33
2.2.5.6 Implementing Parallel Run ... 33
2.2.5.7 Lookup and Control Tables .. 34

3. FTP Receive ... 36
3.1 Overview ... 36
3.2 Tables ... 38
3.3 File Naming Stanards for Receive Files ... 38
3.4 FTP File Handling Process .. 39

 ASPEN Batch

Architecture Guide

 Page 4 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

1. Introduction

This document serves as a guide to ASPEN Batch Architecture which includes batch processes,
standards, naming conventions, and script design. Readers of this document may either go through the
entire document or focus on particular sub sections as appropriate.

1.1 Batch Process

A typical ASPEN batch process consists of extraction, transformation and the loading data as key
functions. The basic component of an ASPEN Batch process is the batch Job; a Batch process consists
of a series of Jobs. Batch Jobs within a process may run either serially or in parallel depending on
interdependencies. The following functional triggers start a Job:

• File Dependency Trigger: A Job waiting for one or more files to be received from an external
agency triggers on the reception of the file. The dependency in this case is a receive file.

• Job Dependency Trigger: A Job waiting for one or more Jobs to be finished, triggers on the
completion (or the failing) of the predecesor Jobs. The dependency in this case is a Job.

• Timer Trigger: A Job triggers at a predetermined point of time. The dependency in this case is
Time.

• Event Trigger: A Job triggers depending on a generic event like the batch scheduling system
explicitly starting a job. The dependency here is the Event.

ASPEN Batch Architecture implements this triggering mechanism through the OpCon scheduler and
LINUX shell scripts. This is described in detail later in this document.

1.2 Batch Framework

All ASPEN batch jobs use the services of the Batch Framework to perform common functions.

This subsection provides an overview of the inner workings of a generic ASPEN batch job.

1. FW_BATCH_PARAMETER_CONTROL

FW_BATCH_PARAMETER_CONTROL is a core table in the batch framework and contains all the key
parameters required by each of the Batch Programs. These parameters are typical operational in nature
(e.g., Run Date and other program specific parameters).

2. Generic Batch Program Flow

The following is the typical progression of a Batch program and its usage of the services from Batch
Framework:

1. The Batch Controller is instantiated and passed in the property file. The property file contains
the following:

• The root directory for the input and output file

• Database connection detail

• Log file path where the framework writes the error log (note: this is different from the
exception and control summary report)

2. The program passes the framework:

• Functional_Area_Id

• JobId

 ASPEN Batch

Architecture Guide

 Page 5 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

• ProgramName
The framework in turn returns to the program its parameter list from the
FW_BATCH_PARAMETER_CONTROL.

3. The program asks the framework for the AsOfDate, which could be one of the following:

• AsOfDate from the FW_BATCH_PARAMETER_CONTROL with JobId=”FW-
GLOBL-DLY”. (This is populated at the beginning of the batch process).

• ReRunDate

4. The program now asks the framework to insert a new record into the
FW_BATCH_RUN_CONTROL, with information regarding the specific JobId. This could
result in the following:

• If no record with the same JobId and AsOfDate exists then a new record is created in
the FW_BATCH_RUN_CONTROL.

• If a record with the same JobId and AsOfDate exists with a StatusCode anything
other than “ST”, then a new record is created with the system time at that point as the
StartTime and “Null” as the endTime.

• If a record with the same JobId and AsOfDate exists with a StatusCode=”ST”, then
an exception is thrown by the framework that the same job is already running. But if
that is not the case, that is the same is not running, then, your program probably
aborted without setting the StatusCd=”AB” (that is, aborted). The administrator will
then have to manually change the StatusCd to abort (“AB”).

5. The program now passes the following to the batch framework:

• The input Job names.

• The corresponding input logical file names.

• The output logical file names.

• Overwrite flag.

The logical file names ends with a relevant suffix such as “DAT”, “RPT”, etc. Typically, one
would like to create three output files for any job: Data file, Exception file and Summary file.

6. The framework now proceeds to create output files. The physical file is created as follows:

• The root directory is taken from the environment variable from the properties file.
(e.g.… / ASPEN/DEV).

• The next directory would be the functional area id. This the framework gets from the
Functional_Area_Id that the program had passed in from step 2. (e.g.… /
ASPEN/DEV /BI).

• The next directory would be the data directory, or the report directory, etc, depending
on the suffix of the logical file name, as explained in step 5. (e.g.… / ASPEN/DEV
BI/data).

• The filename would be the logical file name concatenated with the AsOfDate, got
from step 3, and the Run number. This RunNumber is the highest RunNumber plus
one, which is currently got from the File System, but we will be changing it to be
taken from the FW_BATCH_RUN_CONTROL’s newly added Run number. So now
the physical file has been constructed by the framework as / ASPEN/DEV
/BI/data/TStestGOPI.dailyNoticesDat-10-22-2006.run50

• If the overwrite flag in step 5 is “True” then the Run number is set to zero. Thus in this
case our file would look like / ASPEN/DEV /BI/data/TStestGOPI.dailyNoticesDat-10-
22-2006.run50

7. Insert a record in the FW_BATCH_FILE_CONTROL for the newly created output file. This will

have the programName, logicalFileName, and AsOfDt.

 ASPEN Batch

Architecture Guide

 Page 6 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

8. The framework now proceeds to search for your input files. In this, remember, that the
functional area id could be something other than the programs own functional area id. That is,
a program would write its output file to its own functional area directory, but it could read files
from the directories owned by different functional areas. So now the physical filename is
searched as follows:
The physical file is got as follows:

• The root directory is taken from the environment variable from the properties file.
(e.g… / ASPEN/DEV).

• The next directory would be the functional area id. This the framework gets from the
Functional_Area_Id that the program had passed in from step 5. (The program had
actually passed in the JobId, the framework though extracts the functional area id
from the JobId). (e.g… / ASPEN/DEV /BI).

• The next directory would be the data, or the report directory, etc, depending on the
suffix of the logical file name, as explained in step 5. (e.g… / ASPEN/DEV /BI/data).

• The filename would be the logical file name concatenated with the AsOfDate, got
from step 3, and the Run number. This RunNumber is the highest RunNumber, which
is currently got from the File System, but we will be changing it to be taken from the
FW_BATCH_RUN_CONTROL’s newly added Run number. So now the physical file
has been pointed to by the framework as / ASPEN/DEV
/BI/data/TStestGopi.dailyNoticesDat-10-22-2006.run50

9. The framework now returns a HashTable with the key being the logical file name and the
value being a vector with three elements:

• Physical File Name

• Record Count- This is got from FW_BATCH_FILE_CONTROL.

• Buffered Reader or Writer. (Reader in case of input file and Writer in case of Output
file)

The record count is updated by the program at the end of writing to the output file, please
refer to step 12. In case of the input file, we get the Record Count for verification, please refer
to step 11.

10. The program now proceeds with the business logic, and writes to the database or to the
output file, and to the exception and the summary file.

11. It is the responsibility of the program to keep track of the number of records read from the

input file. After this, check the RecordCount of the input file and check the record count from
step 9. If the number of records read does not match with the number reported by the
RecordCount for the same file, and then report it to the framework, which in turn will put the
information in the FW_BATCH_FILE_CONTROL’s discrepancy quantity field.

12. It is the responsibility of the program to keep track of the number of records written into the

output file. At the end of the program, report the RecordCount to the framework, which in turn
will put the information in the FW_BATCH_FILE_CONTROL’s RecordCount field for that
ProgramName, LogicalFileName, and AsOfDate.

13. If the program ends successfully then inform this to the framework, which will then put the

statusCode in the FW_BATCH_FILE_CONTROL to complete, and the endTime being the
system time at that point. Exit the program with a System.exit(0), which will inform Opcon
scheduler that the program has finished successfully.

14. If the program ends unsuccessfully then inform this to the framework, which will then put the

statusCode in the FW_BATCH_FILE_CONTROL to abort, and the endTime being the system
time at that point. Exit the program with a System.exit(-1), which will inform Opcon scheduler
that the program has aborted.

 ASPEN Batch

Architecture Guide

 Page 7 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

The following diagram summarizes the process explained above:

Batch Program

Starts

Get

Parameters

from

Parameter

Table

Log Error

Message
Stop

Insert Run

Control Table

Record

Any Input Files?

Get File Handlers and

the Record Count s of

Input Files

Creates any

Output Files?

Write the Record

Count of Output

File

Is Process

Successful?

Update Run

Control Record

Stop

Batch Program Flow Control

 Yes

No

Yes

File Access

Methods

Note: In case of any exceptions or Errors at

any time during the process the error message

is logged.

A

A

A

A

A

A

All the shaded boxes represent the

tasks performed by Batch Frame

Works Class methods

TIERSBatchController's

getParameters method gets

the parameters required by

the Batch Program from the

Batch Parameter Table

TIERSBatchController's

insertRunControlRecord

method inserts a record into

Batch RunControl Table

Process Business

Logic

Get File Handlers

of Output Files

Any output files

created?

TIERSBatchController's

processRequest method

gets the File Handles and

the Record Counts of the

Input files

Yes

TIERSBatchController's

processRequest method

gets the File Handles of the

Output files

No

No
TIERSBatchController's

setOutputFileRecordCount

method writes the record

count of the output file to the

Batch File Control Table

TIERSBatchController's

writeError method logs the

error message

TIERSBatchController's

updatetRunControlRecord

methodupdates a record in

the Batch RunControl Table

Version 0.2

Pre-processing

e.g. Receiving

External FIles

Generate Control

Report

Generates Exception Report

using Frame Works. Report

file is handled like any other

output file.

A

 ASPEN Batch

Architecture Guide

 Page 8 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

3. Batch Framework Tables

ASPEN batch framework uses the following key tables to control behavior of the batch jobs. The enables
promotes configurability of the overall batch architecture.

Table Name: FW_BATCH_PARAMETER_CONTROL

Description: This table is used to store the parameters required by each of the Batch Program such as
the Run Date and other program specific functional parameters. Each Batch Program
sends a request to the Batch Frame Works class’ method to get the parameters from this
table.

Primary Key: JOB_ID

Example:

JOB_ID PARAMETERS

CO-G0504-DLY ~N~1~CO-P0504-DLY~

FW-GLOBL-DLY 07/21/2008

BI-FSISS-MLY ~

FM-HR310-MLY 06/01/2008

Notes:

1. This table, in addition to above three columns, has other columns CREATE_USER_ID,
UPDATE_USER_ID, CREATE_DT, UPDATE_DT, UNIQUE_TRANS_ID which are there in all
ASPEN tables.

2. Parameters are separated by a special character, tilde, (~). Parameters of all records except the
record with all Z's are preceded by a tilde (~). The date in the Parameters column of this record is
called Global As Of Date. (Example: Record with Job Id, BI-FSISS-MLY)

3. Every program will have a record in this table even if the program does not use any parameters.
4. If the parameters column has tilde (~) as the first character, the Global As Of Date is used as Run

Date for the job. If the parameters column has a date instead of a tilde (~), the program uses that
particular date as Run Date in case of a rerun of the job. (Example: Record with Job Id, FM-HR310-
MLY)

5. The Job Id is a 12 character string beginning with two character Functional Area Id followed by a
hyphen, a three character string representing the sub-functional area, a hyphen, a three digit running
sequence number, a hyphen and a single character Frequency Indicator.

Table Name: FW_BATCH_RUN_CONTROL

Description: This table is used to store the information related to the execution of the job such as the
Job Id, As Of Date, Start Date & Time, End Date & Time and the Status Code of the job
(ST – Started, AB – Aborted and EN – End). Each Batch program sends a request to the
Batch Frame Works class’s method to insert a record when the job starts and updates
the same record when job ends successfully.

Primary Key: JOB_ID

AS_OF_DT

START_TIME_DT

Example:

 ASPEN Batch

Architecture Guide

 Page 9 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

JOB_ID AS_OF_DT START_TIME_DT END_ TIME_DT STATUS_CD

FM-HR310-MLY 10/22/2006 10/22/2006 11:02:54 AM 10/22/200611:03:13
AM

EN

FW-ASOFD-BOC 10/22/2006 10/22/2006 11:05:13 AM 10/22/200611:05:53
AM

AB

IN-SDMMI-DLY 10/22/2006 10/22/2006 11:05:13 AM ST

Notes:

1. STATUS_CD Column contains the values, ST (Start), AB (Abort) and EN (End).

2. This table, in addition to above five columns, has other columns CREATE_USER_ID,
UPDATE_USER_ID, CREATE_DT, UPDATE_DT, UNIQUE_TRANS_ID which are there in all
ASPEN tables.

Table Name: FW_BATCH_FILE_CONTROL

Description: This table is used to store the information pertaining to the files used by various Batch
programs such as the Program Name, Logical File Name, As Of Date, Run No, File
Creation Date, Record Count and the Discrepancy Quantity. Each Batch program sends
a request to Batch Frame Works class’ method, which selects the record count for a
particular input file, inserts a record when a program creates an output file and updates
the record count when the creation of the output file is successfully completed. If there is
any discrepancy between the record count of an input file and the number of records read
by the batch program, the Batch program sends a request to Batch Frame Works class’s
method to update the Discrepancy quantity.

Primary Key: PROGRAM_NAME

 LOGICAL_FILE_NAME

 AS_OF_DT

 RUN_NUM

Example:

Job_ID LOGICAL

_FILE

_NAME

AS_OF

_DT

RUN

_NU
M

FILE

_CREATION

_DT

RECORD

_COUNT

DISCREPANCY

_QTY

IN-SDMMI-DLY INSndDlyMM
ISMADat

10/22/2
008

0 Sysdate from
oracle

10000 101

Notes:

1. This table, in addition to above seven columns, has other columns CREATE_USER_ID,
UPDATE_USER_ID, CREATE_DT, UPDATE_DT, UNIQUE_TRANS_ID which are there in all
ASPEN tables.

Table Name: FW_FTP_RUN_CONTROL

Description: This table is used to store information pertaining to the files that are received from
external agencies/systems. This table contains FILE_NAME,
FILE_RECEIVED_TIME_DT and FILE_STATUS_CD.

Primary Key: FILE_NAME

Example:

FILE_NAME FILE_RECIVED_TIME_DT FILE_STATUS_CD

 ASPEN Batch

Architecture Guide

 Page 10 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

INSndDlyMMISMADa
t

10/4/2006 11:02:54 AM P

Notes:

1. Possible values of FILE_STATUS_CD are R (Received), P (Processed) ,ST(not Processed in the
QUEUE)

2. This table, in addition to above three columns, has other columns CREATE_USER_ID,
UPDATE_USER_ID, CREATE_DT, UPDATE_DT, UNIQUE_TRANS_ID which are there in all
ASPEN tables.

Table Name: FW_FTP_FILE_LOOKUP

Description: This table is used to store information about the FTPed file and the Jobs that use the file
and the IP Address of the remote server that sends the file. This serves as a mapping
table between File Name and the Job Names that use the file.

Primary Key: FILE_NAME

 JOB_NAME

Example:

FILE_NAME JOB_NAME IP_ADDRESS

INSndDlyMMISMADa
t

IN-SDMMI-DLY 999.99.999.99

Notes:

1. This table, in addition to above three columns, has other columns CREATE_USER_ID,
UPDATE_USER_ID, CREATE_DT, UPDATE_DT, UNIQUE_TRANS_ID which are there in all
ASPEN tables.

The following data model shows other control tables used by the ASPEN batch framework along

with the key tables explained above:

 ASPEN Batch

Architecture Guide

 Page 11 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

4. Sample Sequence Diagrams

The following diagrams show examples of sequence diagrams for a typical ASPEN batch job:

 ASPEN Batch

Architecture Guide

 Page 12 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 : System clock
 : DailyFSIssuance : BITriggerDetails : BenefitIssuance : ARTSDetail : BIValidations : BIReports : FoodStampDetail : BatchFrameWorkObject : PrintFacility : EBT

This method will
select all the
approved trigger
from the trigger
table populated
by Disposition.

Validate the issuance
amount
 of selected benefit

Get the recoupment amt from
the recoupment table

Calculate the benefit
amount based on
Auth amount and
Recoupment
amount

Generate benefit number
for the issuance

Get the information for the
benefit record and create
the benefit record,

Method to insert record in
BI_FS_DETAIL table

Update the record in
the
issuance_trigger_table

Write Summary and
Exception report

Print Report

Write Benefit
Record to EBT file if
amount is greater
than zero

1: startJob

10: calculateBenefitAmt()

12: prepareEBTData()

7: getDailyFSBenefits()

14: updateDailyTrigger()

15: writeEBTRecord

8: validateIssuanceAmount()

9: getRecoupmentAmt()

11: generateBenefitNum()

13: addFSDetail()

18: generateReport()

20: sendPrintFile()

2: getParameters(BI, SendEBTBenefit,SendEBTBenefitDaily.ksh)

3: insertRunControlRecord(SendEBTBenefitDaily.ksh, SendEBTBenefit, As Of Date)

4: processRequest(SendEBTBenefitDaily.ksh, SendEBTBenefit, InputFiles[None], OutputFiles[SendEBTBenefit,Summary,Exception], FileCreation date, OverwriteFlag)

5: getReferenceTableData(County, ALL)

6: getDBConnection()

17: writeSummaryReportHeader(SummaryReportBufferedWriter)16: commit()

19: updateRunControlTable(SendEBTBenefitDaily.ksh, SendEBTBenefit, Status)

SEND EBT
DAILY

 ASPEN Batch

Architecture Guide

 Page 13 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 : System clock
 :

ReceiveEBTData
 :

FoodStampDetail
 :

EBTException
 : BIReports

 : PrintFacility
 :

BatchFrameWorkObject
 :

BatchExceptionObject

Send file to
TDHS print
facility

Generate
summary report

If the record is
adjusted insert a
record in FS Detail
with status as
Adjusted
Insert a record in
EBT Exception

If the record is
acknoledged
insert a record
in FS Detail
with status as
Acknowledged.

Read EBT
recevice file

1: startJob()

9: updateFSDetailStatus()

10: updateEBTException()

14: generateSummaryReport()

16: sendPrintFile(Summary, Exception)

2: getParameters(BI, ReceiveEBTData,ReceiveEBTDataDaily.ksh)

3: insertRunControlRecord(ReceiveEBTDataDaily.ksh, ReceiveEBTData, As Of Date)

4: processRequest(ReceiveEBTDataDaily.ksh, ReceiveEBTData, InputFiles[EBTReceiveFile], OutputFiles[Summary,Exception], FileCreation date, OverwriteFlag)

5: readFromFile(BufferedReaderforEBTReceiveFile)

6: getReferenceTableData(County, ALL)

7: getReferenceTableData(EBTRejectionCodes,ALL)

8: getDBConnection()

11: writeException(Error MsgID)

13: writeSummaryReportHeader(SummaryReportBufferedWriter)

12: Commit()

15: updateRunControlTable((ReceiveEBTDataDaily.ksh, ReceiveEBTData, Status))

RECEIVE
EBT DAILY

 ASPEN Batch

Architecture Guide

 Page 14 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

5. Debugging of Batch Jobs

When the Batch cycle is run, various types of aborts can happen. These errors can be debugged as
explained below using the ASPEN batch framework and other log files:

1. The contents of the stderr file is created by the job in /temp sub-directory of respective Functional
Area directory. The name of the stderr file is constructed as JOBID_stderr_MM-DD-YY-HH-MI-SS
(Ex: BI-DFISS-DLY_stderr_02-26-02-11-42-25).

2. If the error is pertaining to Shell Script, it could be because of the following reasons:

• The execute permissions of the script file

• Syntax errors in the script file

• The file paths used in the script. Make sure that the file paths in the script are absolute. No
relative paths can be used as the scheduler (OpCon), cannot correctly resolve the relative
paths at the time of job execution.

3. Class Not Found error: The stderr file can have any exception messages like
NoClassDefFoundError, and if any, verify the CLASSPATH.

4. Null Pointer Exceptions: The stderr file can have other runtime exceptions such as
nullPointerException and if any, explore the reasons for the exception, analyze and fix the
problem and rerun the job after an appropriate promotion and deployment process.

5. The Control/Summary has report of all processing, and it categorizes the problem as data related
or program related.

6. The Exception report has the exceptions written to by the program. For any exceptions, identify
the cause of the exception and take an appropriate action.

7. The Framework has many logger files where framework related errors are captured. These are
kept in the /ASPENBATCH/PRD/ASPENLogs/ directory, and has names like DEFAULT.log,
Persistence.log etc.

6. Prefetch Logic

Prefetch is required for application programs to have a cursor alive to query into the database. In batch
programs if the cursor is not provided, the job may run into out of sequence errors. The following process
is used by all batch programs to fetch records from the result set:

1. Programs that need prefetch will call Collection.next("findByMethod) to get the next set of records

2. After are records in the collection are processed, a mandatory Collection.clear call is made, which
will close all the cached statements

3. Programs will not call the same finderby again and again, or use the same collection for an
update, insert etc. The following is an example of how to implement this in application code:

**

fwbparmCollection.setSelectSize(100);

retCargos =

(FwBatchParameterControlCargo[]) fwbparmCollection.select(

 "findBySurrogateKey",

 params);

while(retCargos != null && retCargos.length != 0){

 for (int i=0; i < retCargos.length; i++)

 asOfDate = retCargos[0].getParameters();

 retCargos =

 ASPEN Batch

Architecture Guide

 Page 15 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

(FwBatchParameterControlCargo[]) fwbparmCollection.next("findBySurrogateKey");

}

fwbparmCollection.clear();

**

4. All the findByMethods using prefetch needs to be changed such that

a. while(rs.next() && cnt++ < maxRows) { is changed to

while(cnt++ < maxRows && rs.next()) {

b. if (statement != null) statement.close; is changed to

if (statement != null) closeStatement("findBySurrogateKey", statement);

c. if (rs != null) rs.close() is changed to

 if (rs != null && getClose()) rs.close();

 ASPEN Batch

Architecture Guide

 Page 16 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

2. ASPEN Batch Job Standards

This section documents various standards used by ASPEN batch jobs that include coding, naming,
functional, deployment, and SQL standards.

2.1 File Types

All the files will be saved in the appropriate folders for a given environment and a Functional Area.

ASPENBATCH/<ENV>/<FUNCTIONAL_AREA_ID>/<FILE_TYPE>/ where:

a. ENV - is the environment in which the program ran like e.g. PRD, UAT DEV

b. FUNCTIONAL_AREA _ID - is a two character code to represent the Functional Area like “co” and
“in”

c. FILE_TYPE - is the type of file like “data”, “reports” and so on. Examples:

1. Java Source files created for dev environment, for AR, will be saved in the
path:ASPENBATCH/ENV/ ar/java

2. Data files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/data/.

3. Report files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/report/.

4. Scripts files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/script/.

5. Print files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/print/.

6. Sort files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/sort/

7. Split files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/split/

8. Temp files created in “dev” environment, for AR, will be saved in the path:
:ASPENBATCH/ENV/ar/temp/

2.2 Naming Standards

The following naming standards are used for ASPEN batch:

1. Shell Scripts Naming standards

A Shell Script will invoke a Java program to perform a business function and may have some other Unix
commands to perform some other tasks. It is strongly recommended that each Job/Script runs only one
Java program. This allows rerun of any of the program without changing the script. All Shell Scripts will
have the names in the following format with an extension .ksh:

Format: <Functional Area Id>-<Business Function>-<Frequency>.ksh

Where:

a. Functional Area Id is a 2 character code (in upper case) to represent the Functional Area like
“CO” and “IN”,

b. Business Function - is the business function that the script performs when executed,

c. Frequency - is last three characters indicating the frequency of the run

DLY – Daily,

 ASPEN Batch

Architecture Guide

 Page 17 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

WLY– Weekly and

MLY – Monthly

ALY – Annually

For example: A Shell Script (BI-FSISS-DLY.ksh) to invoke a Java program: BI-FSISS-DLY

2. File Naming Standards

All output files created internally by various Batch programs have the names conforming to the following
format:

<Job Name >.<Logical File Name>-<Date Stamp>.runYY

Where:

a. Job Name is the name of the Shell Script that runs the java program, which creates the output
files,

b. Logical File Name identifies the functional purpose of the file like Messages, Letters. Notices

c. Date Stamp is the AS_OF_DATE in the format MM-DD-YY.

YY is the run number.

For example: BI-FSISS-MLY.BIMontlhlyFSIssuanceFile1Dat-04-30-2008.run0 and BI-FSISS-

MLY.BIMontlhlyFSIssuanceFile1Dat-04-30-2008.run1

2.2.2.1 Construction of the output file names

The following process is used to construct internal output files such as extracts for reports:

1. The Job/Script passes its Job Id to the Batch Program.

2. The Batch program passes the Functional Area Id, Job Name and Logical File Name for each
output file to the Batch Frame Works class.

3. The Batch Frame Works class gets the ENV from the properties file. ENV helps Batch Frame
Works in determining the sub-directory under ASPENBATCH. Each environment will use one
properties file.

4. Functional Area Id helps Batch Frame Works in determining the sub-directory under the ENV
sub-directory.

5. Last three characters of logical file name help Batch Frame Works in determining the sub-
directory under the FUNCTIONAL AREA ID sub-directory in which the output file is to be created
(Dat - data, Rpt - report, Prt - print)

6. The Batch Frame Works class constructs the complete file name by concatenating the complete
path (/ASPENBATCH/ENV sub-directory/FUNCTIONA AREA ID sub-directory/file type sub-
directory), Job Name, Logical File Name, AS_OF_DATE (same for all jobs run in one batch run in
the format MM-DD-YY) and the RUN_NO.

2.2.2.2 Construction of the input file names

The following process is used to construct internal output files such as extracts for reports:

1. The Batch program passes the Functional Area Id, Job Name and Logical File Name for each
output file to the Batch Frame Works class.

2. The Batch Frame Works class gets the ENV from the properties file. ENV helps Batch Frame
Works in determining the sub-directory under ASPENBATCH. Each environment will use one
properties file.

 ASPEN Batch

Architecture Guide

 Page 18 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

3. Functional Area Id helps Batch Frame Works in determining the sub-directory under the ENV
sub-directory.

4. Last three characters of logical file name help Batch Frame Works in determining the sub-
directory under the FUNCTIONAL AREA ID sub-directory in which the output file is to be created
(Dat - data, Rpt - report, Prt - print)

5. The Batch Frame Works class constructs the complete file name by concatenating the complete
path (/ASPENBATCH/ENV sub-directory/FUNCTIONA AREA ID sub-directory/file type sub-
directory), Job Name, Logical File Name, AS_OF_DATE (same for all jobs run in one batch run in
the format MM-DD-YY) and the RUN_NO.

3. SQL Standards and Tuning Tips

SQL code is the guts of any data-intensive system. Good SQL practices needs to be practiced, especially
for the batch subsystem. The following guidelines and tips will help the developer in writing efficient
SQLs.

Use Explain Plan: All SQLs are run through explain plan and results analyzed. Look out for full table scans
and costly range scans.

Is Index present? Is it Breaking?: If the Explain Plan is showing full table scan or a large index range scan,
then look into whether the filters in your Joins have indexes on them. If they are indexed, but the query is
still going in for full table scan, then check if something else in your query is breaking the index.

Avoid WHERE clauses that are non-sargable: Non-sargable (i.e., Search ARGument Able) search
arguments in the WHERE clause, such as "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT IN", "NOT LIKE",
and "LIKE %500" can prevent the query optimizer from using an index to perform a search. In addition,
expressions that include a function on a column, or expressions that have the same column on both sides
of the operator are not sargable.

Limit the use of “LIKE”: employerName like “%Gunda” breaks the index on the employerName.

Don’t use functions on indexed columns: RTRIM(employerName) = “Matt” breaks the index on
employerName. If your program needs to have functions on the filter, ask the DBA to build Function
Indexes.

Batch Read: Indexes are organized in a B-Tree and thus it is a node-by-node read. If your SQL is
supposed to return a large amount of rows (recordset), then indexed read becomes more time consuming
than not having an index at all. Please note that indexed read is not batch read. If you have a scenario
where about 30% of, say, employers reside under the same zip code then an index on employerZipCode
is actually bad for performance. In such cases it is better to go in for a full table scan instead. Contact the
DBAs to set options in the databases that automatically breaks the indexes depending upon data
percentage.

Composite Keys and Duplicate keys issues: The first key in the composite (primary and indexed) key
should be the most restrictive; the rest of the keys that follow should gradually narrow down in selectivity.
Check whether the reverse is happening, i.e. the first key is the least restrictive; the last is most
restrictive. Also, check on whether a new index you are about to create is the leading part of an existing
composite key. Avoid over-indexing.

Look out for the Joins. There are four types of JOINs:

 ASPEN Batch

Architecture Guide

 Page 19 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

• Nested Loop Join

• Merge Join

• Hash Join

• Cluster Join

Nested Loop Join is when valid indexes are present and filters are suitably restrictive. Here the optimizer
considers one of the tables as the inner table and the others as outer tables. Merge Join is better than
Nested Join when indexes are missing or the search criteria is not restrictive enough. Hash Join only
does a good job when the tables significantly differ in size. It is also not efficient when number of rows to
be returned is very large, for the hash code does not keep the data sequentially. Merge join is sorted and
hence can bring in chunks of data faster. Clustered Join is for clustered table. It uses cluster key and is a
special case. Ideally, the optimizer analyses and decides the JOINS for you. You can use explain plan
and the Oracle Table analyzer in order to check whether the optimizer is doing its job. If not, contact the
DBA.

Sub Queries or Joins?: Sub Queries are much more in your control than JOINS. Go for it and do your own
optimization if you are confident of doing a better job and always work with the DBA.

Where to keep the Recordset: Client side or Server side?: Peruse through the connectivity documents that
the vendor has provided and find out how the Record Set is being maintained and mapped in the client
side and server side, vis-à-vis their specifications, and come to an intelligent decision on that. In case of
different scenarios and different vendors things may work out differently. In ASPEN Oracle thin client,
cursor is maintained in the server with the client side cursor fetched in blocks of 32. This figure is
updateable through the Resultset.getFetchSize().

BLOBs and large data: Used to store large binary data. Contact the dba before use.

Use Stored Procedures or Prepared Statements: Stored procedure and Prepared statements are compiled
and optimized on the server, so it is superior to SQLs that are compiled and optimized on the fly. In
ASPEN Stored Procedure should not be used but Prepared statements should be used.

Use Functions directly and not bring the Dual table indirection into it:
 Select * from Employer where

 JoinDate= Sysdate();

 is much better than

 Select * from Employer where

 JoinDate= (select sysdate from dual)

Check whether it is a Rule Based or a Cost Based Optimizer: The query is always processed from bottoms
up. Order the tables such that the primary table is in the bottom of the table list in the select clause. In
ASPEN during testing phase the optimizer is kept rule-based and later in production it would be switched
to cost-based.

Use SET TRANSACTION: Make it a habit to SET TRANSACTION before starting a new transaction. This
would resolve some of the migration issues, if it were to happen down the line. You can set your
transaction type through the connection object.

Remember to Cleanup: Close all cursors.

 ASPEN Batch

Architecture Guide

 Page 20 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

LOCKING is dangerous, Use NOWAIT: Oracle has implicit row level locking. But you can bypass it by either
using the SELECT FOR UPDATE or the LOCK TABLE command. Don’t use either of this if your program
is not affecting the whole table. Even in case of TRANSACTIONs, only the transaction with isolation level
SERIALIZABLE produces an effect of exclusively locking the affected records. All the others go in for
shared locks. There is very little reason why you would need to issue a LOCK TABLE command. But if
you do decide to issue it, then do a NOWAIT switch on it, so that your program doesn’t wait forever for
the resource.

DMLs and default Lock Mode:
“Select ... for update of” acquires a Row Share lock. All other DML acquires a Row Exclusive lock. This
chart from the Oracle Documentation better explains:

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table FOR UPDATE OF ... X RS

LOCK TABLE table IN ...

ROW SHARE MODE RS

ROW EXCLUSIVE MODE RX

SHARE MODE S

SHARE EXCLUSIVE MODE SRX

EXCLUSIVE MODE X

 X: exclusive RS: row share

 RX: row
exclusive

S: share

 SRX: share row exclusive

Exclusive Lock mode: Prevents the associated resource from being shared. This lock mode is obtained to
modify data. The first transaction to lock a resource exclusively is the only transaction that can alter the
resource until the exclusive lock is released.

Share lock mode: Allows the associated resource to be shared, depending on the operations involved.
Multiple users reading data can share the data, holding share locks to prevent concurrent access by a
writer (who needs an exclusive lock). Several transactions can acquire share locks on the same resource.

Don’t overload the Rollback segment: Transaction point of view, one would like to commit only at the last
moment, but be prudent about this. There is a physical and logical limit to the number of transactions that
can be processed before a commit is made. Committing too often is not good either. This will cause the
database to flush changes more often than required. Doing this in batch (after a certain number of
transactions) is better for the database. Again not committing a large number of transactions can expand
the rollback segments considerably. Not only does this kind of practice slow down the system but it could
also result in the Transaction itself being shot down by the ORA-01555 ‘Snapshot too old’ message.

 ASPEN Batch

Architecture Guide

 Page 21 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

ORA-01002 Fetch Out Of Sequence: Some of the batch programs have faced the 'fetch out of sequence'
error. This error is due to not having an active transaction while doing the "select for update" in the DAO's
update. This comes about when connection.setAutoCommit is not set to false. So, the JDBC not knowing
what your program's unit of work is, commits after a 'select for update', but before the actual update itself
is called, and thus in the process releases the locks that the 'select for update' had got. The database, in
this case, throws the 'fetch out of sequence' error. To avoid this problem, in the new batch releases, the
connection would be given out to the batch programs with setAutoCommit set to false. So, every
programs needs to have its own transaction boundary demarcated with commits and rollbacks. As a
caveat, it also needs to be mentioned here that if you are not passing connection in collection, then too,
this same problem does occur.

ORA-00054 - Resource Busy: Some of the batch programs have failed with the error- ORA-00054:
resource busy and acquire with NOWAIT specified. As load and number of programs increase this error
would become more frequent, and a major pain as batch becomes more concurrent. We can handle this
error in the following ways:

➢ When the error happens abort the batch program.

➢ When the error happens retry programmatically to get the lock after a couple of seconds. Some of
the oracle literatures suggest that there are about 80% chances of success to get a lock on the
retry with such a strategy of waiting.

ORA-01000 - Maximum Cursor Size Exceeded: Some of the batch programs have failed with the error-
ORA-01000: Maximum Cursor Size Exceeded. This is because statements are not being closed after
usage.

Don’t use DISTINCT- Use UNION ALL instead of UNION: Use of DISTINCT to remove duplicates, and use of
UNION that implicitly removes duplicates, are killer SQLs, and the first in the list to be avoided like a
plague. Remove the duplicates yourself in your code or your SQL; don’t ask the database to do it for you.
It does a lousy job on that.

Take care of network traffic: Don’t return rows and columns you won’t need.

Use BETWEEN instead of IN:
SELECT customer_number, customer_name
FROM customer
WHERE customer_number in (1000, 1001, 1002, 1003, 1004)

is much less efficient than:

SELECT customer_number, customer_name
FROM customer
WHERE customer_number BETWEEN 1000 and 1004

Don’t do string manipulation in your SQL: Get the data out and do the string manipulation in your program.
Get out the coarse data from the database, and make it fine-grained yourself. In the ASPEN project the
general philosophy is to have the database as a central repository while all the data processing is to be
done heavily in the middle tier.

Never use the GROUP BY clause without an aggregate function: This is because you can accomplish the
same end result by using the DISTINCT option instead, and it is faster.
For example, you could write your query two different ways:

 ASPEN Batch

Architecture Guide

 Page 22 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

SELECT OrderID
FROM OrderDetails
WHERE UnitPrice > 10
GROUP BY OrderID

SELECT DISTINCT OrderID
FROM OrderDetails

WHERE UnitPrice > 10

Both the above queries produce the same results, but the second one will use less resources and
perform faster.

View or Materialized View: If the data in your view is static enough, it may make sense to go for MV
(materialized view). This would improve performance considerably.

Deferrable or Non-Deferrable Constraints: You can defer the constraint check till the commit, which could
improve performance but also increase risk.

ORA-0600 - Catchall error: In ASPEN this error was found associated with data corruption, and when the
JDBC drivers and database version were out of sync. Theoretically, it could be DB data space issue too.

Turn off auto-commit for better performance: When you first establish a connection to the database, the
connection, by default, is in auto-commit mode. For better performance, turn auto-commit off by calling
the Connection's setAutoCommit() method, passing it a boolean false, as follows:
conn.setAutoCommit(false); Be aware, however, that once you turn auto-commit off, you'll have to
manually manage your transactions by calling the Connection's commit() and rollback() methods

Use the Oracle locator methods to insert and update large objects (LOBs): Oracle's implementation of
PreparedStatement does not fully support the manipulation of large objects like BLOBs and CLOBs.
Specifically, the Thin driver does not support the use of the PreparedStatement object's setObject() and
setBinaryStream() methods to set a BLOB's value, nor does it support the use of setCharacterStream() to
set a CLOB's value. In addition, only methods in the locator itself, represented by a java.sql.Blob or a
java.sql.Clob, can retrieve a LOB's value from the database. The fact that you can use a
PreparedStatement to insert or update a LOB, but need to use a locator to retrieve a LOB's value, is
inconsistent. Because of these two issues, we recommend you consistently use the locator's methods to
insert, update, and retrieve LOB data.

Row Prefetching (Client Side Cursor): Oracle JDBC drivers allow you to set the number of rows to prefetch
into the client while a result set is being populated during a query. This feature reduces the number of
round trips to the server. Standard JDBC receives the result set one row at a time, and each row requires
a round trip to the database. The row prefetching feature associates an integer row-prefetch setting with a
given statement object. JDBC fetches that number of rows at a time from the database during the query.
That is, JDBC will fetch N rows that match the query criteria and bring them all back to the client at once,
where N is the prefetch setting. Then, once your next() calls have run through those N rows, JDBC will go
back to fetch the next N rows that match the criteria. You can set the number of rows to prefetch for a
particular Oracle statement (any type of statement). You can also reset the default number of rows that
will be pre-fetched for all statements in your connection. The default number of rows to prefetch to the
client is 10.

Database Update Batching: Oracle JDBC drivers allow you to accumulate inserts and updates of prepared
statements at the client and send them to the server in batches, reducing round trips to the server. You

 ASPEN Batch

Architecture Guide

 Page 23 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

might want to do this when you are repeating the same statement with different bind variables. Normally
JDBC makes a round trip to the database to execute a prepared statement whenever the statement's
executeUpdate() method is called. (Note that executeUpdate is batch mode while executeQuery is non-
batch mode). The Oracle update-batching feature, however, associates a batch value with each prepared
statement object. Oracle JDBC accumulates execution requests for the prepared statement, and then
automatically passes them all to the database for execution once the batch value is reached. Currently,
only Conversion track has been given the permission to use Update batch facility, as architecturally using
this feature locks in the system to the Oracle vendor. Also, in stage1C we faced many difficulties with this
feature, as there is an optimum bandwidth where this feature actually gives performance benefits, while
the rest of the times it makes the JVM hang.

Update Batching Limitations: You can use update batching with CallableStatements except when the
CallableStatement has OUT parameters. In this case, the driver automatically overrides any previous
batch value and resets it to 1. Do not use the addBatch() and executeBatch() methods of the JDBC 2.0
PreparedStatement interface. These methods are not consistent with the functionality offered by the
methods associated with the OraclePreparedStatement.
Regardless of the batch value of an Oracle prepared statement, if any of the bind variables of the
statement is (or becomes) a streaming type, then JDBC sets the batch value to 1 and sends any queued
requests to the database for execution.

Don’t use Scrollable and Update-able Result Set: Oracle provides with different categories of Result Set -
Forward-only/read-only; Forward-only/update-able; Scroll-sensitive/read-only; Scroll-sensitive/update-
able; Scroll-insensitive/read-only; Scroll-insensitive/update-able. Scrollable and update-able Result Set
wield lot of power, but it is heavy and slow. Don’t use it.

Connection Pooling while opening connection: The ASPEN framework will pool connection for you.

Transaction Issues: Oracle provides both implicit transaction management (which is recommended) and
explicit locking mechanism. The implicit transaction management is provided mainly by the two SQL
statements defined by the ANSI standards: COMMIT and ROLLBACK. Explicit locking mechanism is
provided by an Oracle command: LOCK.

Transaction Isolation: The ANSI/ISO SQL standard defines four levels of transaction isolation. The
standard defines these levels of isolation in terms of three phenomena that must be prevented between
concurrent transactions. The three phenomena that must be prevented are:
Dirty reads: Occur when a transaction reads data written by concurrent uncommitted transaction.

Non-repeatable reads: Occur when a transaction re-reads data it has previously read and finds that data
has been modified by another transaction (that was committed since the initial read).

Phantom reads: Occur when a transaction re-executes a query returning a set of rows that satisfy a
search condition and finds that the set of rows satisfying the condition has changed due to another
recently-committed transaction.

Read-Committed: Read Committed is the default isolation level in Oracle. When a transaction runs on this
isolation level, a SELECT query sees only data committed before the query began. It does not see
uncommitted data nor does it see changes committed during query execution by concurrent transactions.
(However, the SELECT does see the effects of previous updates executed within this same transaction,
even though they are not yet committed.) Notice that two successive SELECT queries can see different
data, even though they are within a single transaction, if other transactions commit changes during
execution of the first SELECT. If a target row found by a query while executing an UPDATE statement (or
DELETE or SELECT FOR UPDATE statements) has already been updated by a concurrent uncommitted
transaction, then the second transaction that tries to update this row will wait for the other transaction to

 ASPEN Batch

Architecture Guide

 Page 24 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

commit or rollback. In the case of rollback, the waiting transaction can proceed to change the row. In the
case of commit (and if the row still exists; that is, if it was not deleted by the other transaction), the query
will be re-executed for this row to check that the new row version still satisfies the query search condition.
If the new row version satisfies the query search condition then the row will be updated (or deleted or
marked for update). Note that the starting point for the update will be the new row version. After the
update, the doubly-updated row is visible to subsequent SELECT queries in the current transaction. Thus,
the current transaction is able to see the effects of the other transaction for this specific row. The partial
transaction isolation provided by Read Committed level is adequate for many applications, and this level
is fast and simple to use. However, for applications that do complex queries and updates, you may
require a more rigorously consistent view of the database than what Read Committed level provides.

Serializable Isolation Level: Serializable level provides the highest transaction isolation. This level
emulates serial transaction execution, as if transactions had been executed one after another, serially,
rather than concurrently. However, applications using this level must be prepared to retry transactions in
the event of serialization failures. When a transaction is on the serializable level, a SELECT query sees
only data committed before the transaction began. It does not see uncommitted data nor does it see
changes committed during transaction execution by concurrent transactions. (However, the SELECT
query does see the effects of previous updates executed within this same transaction, even though they
are not yet committed.) This is different from Read Committed in that the SELECT sees a snapshot taken
from the start of the transaction, not from the start of the current query within the transaction. If a target
row found by a query while executing an UPDATE statement (or DELETE or SELECT FOR UPDATE
statements) has already been updated by a concurrent uncommitted transaction then the second
transaction that tries to update this row will wait for the other transaction to commit or rollback. In the case
of rollback, the waiting transaction can proceed to change the row. In the case of a concurrent transaction
commit, a serializable transaction will be rolled back with the message “cannot serialize access due to
concurrent update” because a serializable transaction cannot modify rows changed by other transactions
after the serializable transaction began. When the application receives this error message, it should abort
the current transaction and then retry the whole transaction from the beginning. The second time through,
the transaction sees the previously-committed change as part of its initial view of the database, so there
is no logical conflict in using the new version of the row as the starting point for the new transaction's
update. Note that only updating transactions may need to be retried; read-only transactions never have
serialization conflicts. Serializable transaction level provides a rigorous guarantee that each transaction
sees a wholly consistent view of the database. However, the application has to be prepared to retry
transactions when concurrent updates make it impossible to sustain the illusion of serial execution, and
the cost of redoing complex transactions may be significant. So this level is recommended only when
update queries contain logic sufficiently complex that they may give wrong answers in Read Committed
level.
As can be noticed from the above discussion, SERIALIZABLE is very aggressive in providing
concurrency control. Your program may not need so much of protection. So make a wise decision on the
isolation level that you actually need.

4. Checkpoint- Restart

Checkpoint-Restart is used by batch programs to start from where they left off from a previous execution.
The program could have exited from the previous run owing to an exception, or a voluntary exit to allow
for manual intervention. Any batch program can use checkpoint-restart, but it would be primarily used by-

• Lengthy jobs, which do not want to do the processing all over again in case of failure.

• Mission Critical jobs that need to absolutely recover from failures.

• Jobs those are not logically re-enterable with the same dataset.

 ASPEN Batch

Architecture Guide

 Page 25 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

2.2.4.1 Understanding Checkpoint-Restart

In checkpoint-restart the attributes of a program is saved in the persistence (database in our case)
whenever a commit is called. If the program has committed, say, ten times, and it fails in the eleventh
transaction, then on restart the program will get back the attributes/properties (which are the instance field
variables) that was persisted during the tenth commit.

2.2.4.2 Abstract Batch

On Startup all programs that need to implement Checkpoint-Restart or Parallel Run need to implement
abstract batch. The abstract batch talks to the batch controller (/manager) to manage the batch program.
When the program calls the “start()” the control goes to the Abstract batch, which checks whether the
program is restartable or not. This it finds through the entry in RESTART element in the
BATCHJOBCONTROL reference table.

If it is a restartable program then the abstract batch asks the batch manager to give it the attributes stored
from a previous aborted run in the FW_BATCH_RESTART_CONTROL table. If there are no abort for
that asOfDate then it is a clean start. It accurately points to the last aborted run through the
getAdjustedMaximumRunNum in the batchRunController class.

If the AbstractBatch finds attributes stored from the previous run that was aborted then it does a reflection
on the caller program’s fields and populates it with the corresponding attributes based on the following
constraints.

• Only primitive variables and String are populated.

• Only instance variables with public visibility are populated

Also, the abstract batch is instantiating the tiersBatchController. So it needn’t be instantiated again. If you
want, you can get an handle to the tiersbatchcontroller through the getTIERSBatchController() method in
the abstract batch and then call the methods therein, but this is not recommended. Also the application
needs to get connection from the abstract batch’s getConnection() method.

2.2.4.3 On Commit

The program should call commit through the abstract batch’s “commit()”. The commit acts like the
checkpoint. Commit will be doing the following:

• Flush on all the output files.

• Database commit.

• Persist variables into the database as a checkpoint.

So, in the application program itself you should not be doing a file.flush or connection.commit; the
abstract batch should be doing it for you. There are two commits provided in abstract batch. These are
logicalCommit() and Commit().

The logicalCommit() looks into the commit size from the reference table and commits only in chunks.
Commit() method, on the other hand, shall commit forcibly without checking whether commit size (read
from the reference table) has been reached or not.

2.2.4.4 Output File

For restart, the overwriteflag is always set to true and the output files will always be opened in the
"append" mode. So, in the restart scenario you will get the handle to the previous run's output file and you
can start writing into it and it will get appended. The overwrite logic works as follows:

 ASPEN Batch

Architecture Guide

 Page 26 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

• getAdjustedMaximumRunNum() to get the runNum. This will see to it that the file handle is that of
the previous run in the scenario that the last run was aborted, else it will point to a newly created
file.

• If it is a restart file then open it in append mode, if not open in the write mode.

2.2.4.5 Stop(”EN”)

On stop, the batch manager would put in indicators in batch tables that would inform that the program
finished successfully, and hence there is no requirement to use the saved attributes of the previous run,
as it is not ended abnormally.

2.2.4.6 getAdjustedMaximumRunNum() of the batch Controller

This method does the following:

• Gets the records of the program for that AsOfDate.

• If the corresponding overwriteflag is ‘Y’ and is a restart program then count the number of times
overwrite is ‘N’ for all the runs.

• If the corresponding overwriteflag is ‘N’ count the number of times overwrite is ‘N’ for all the runs.

This will point to the required program. There is also a boundary condition, which is not delved on in this
bulletin.

2.2.4.7 Reference Table Entry

The reference table information that needs to go in BATCHJOBCONTROL must be having a RESTART
element. Below is the sample entry for it. You need to contact RTD for data entry.

<Row>

<ID>2</ID>

<Code>TS-UTL-001-D</Code>

<Description>BATCH TEST NAME</Description>

<COMMITSIZE>50COMMITSIZE>

<RESTART>Y</RESTART>

</Row>

2.2.4.8 Implementing Checkpoint Restart

To implement parallel run, the following needs to be done:

1. Extend AbstractBatch.

2. Do not instantiate TIERSBatchController

3. Instead of calling the TIERSBatchController methods call the corresponding method of the
AbstractBatch

4. Make the fields whose values you want to persist instance variables and public.

5. Do not do a bufferedWriter.flush() or connection.commit(), just call AbstractBatch’s commit()

 ASPEN Batch

Architecture Guide

 Page 27 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

Example Program

package us.mi.state.dhs.fw.batch.HelperClasses;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.util.Vector;
import us.mi.state.dhs.fw.batch.*;
import us.mi.state.dhs.fw.batch.Adapter.BatchFile;
import us.mi.state.dhs.fw.batch.Adapter.BatchParameter;
import us.mi.state.dhs.fw.batch.Controller.TIERSBatchController;
import us.mi.state.dhs.fw.business.exceptions.TIERSBatchException;

public class BatchTestNew extends AbstractBatch{
 public int intValue =10;
 public String stringValue = "Stringer";
 public char charValue = 'x';

 public static void main(java.lang.String[] args) throws TIERSBatchException {
 BatchTestNew btn = new BatchTestNew();
 try{
 String line = null;
 btn.setJobId(args[0]);
 btn.setParallelRunId(args[1]);
 btn.setOverWriteFlag(false);
 String fullyQualifiedProgramName = btn.getClass().getName();

String programName =
fullyQualifiedProgramName.substring(fullyQualifiedProgramName.lastIndexOf(".") + 1,
fullyQualifiedProgramName.length());

 btn.setProgramName(programName);
 BatchParameter bP = btn.getParameters();
 String AsOfDate = bP.getAsOfDate(); // gets in mm/dd/yyyy format
 String GlobalAsOfDate = bP.getGlobalAsOfDate(); // gets in mm/dd/yyyy format
 Vector parm = bP.getFunctionalParameter();
 btn.start();
 TIERSBatchController tbc = btn.getTIERSBatchController();
 String processBeginTime = tbc.getTimeStamp();

 BatchFile ip1BatFile = btn.getInputFileName("messagesDat");

// needs the date in //mm/dd/yyyy
BatchFile ip2BatFile = btn.getInputFileName("noticesDat");

 BatchFile op1BatFile = btn.getOutputFileName("dailyNotices3nDat");
 BufferedReader br1= (BufferedReader) ip1BatFile.getBufferedStream();
 BufferedReader br2= (BufferedReader) ip2BatFile.getBufferedStream();
 BufferedWriter bw1= (BufferedWriter) op1BatFile.getBufferedStream();
 BufferedWriter buffWriterSummary= tbc.getSummaryReportFileHandle();
 long outRecordCount = 0L;
 long numOfRecordsRead = 0L;
 long inp1RecCnt = ip1BatFile.getRecordCount();
 long inp2RecCnt = ip2BatFile.getRecordCount();
 // read the first file & write it
 do {
 try {
 line = br1.readLine();
 System.out.println(line);

 ASPEN Batch

Architecture Guide

 Page 28 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 if (line != null) {
 numOfRecordsRead++;
 }
 if (line != null)
 {
 bw1.write(line);
 }
 bw1.newLine();
 outRecordCount++;
 } catch (Exception ex) {

int statusCode =
btn.writeExceptionRecord(BatchConstants.FATAL, "Summary
Message", ex.getMessage()+"",
BatchConstants.REPORT_HEADER, true);

 if (statusCode == -1)
 {
 ex.printStackTrace();
 btn.abort();
 System.exit(statusCode);
 }
 }
 } while (line != null);

op1BatFile.setDBRecordCount(outRecordCount);
 if (numOfRecordsRead != inp1RecCnt) {
 ip1BatFile.setDBDiscrepancyQty(inp1RecCnt - numOfRecordsRead);
 }
 // read the second file & write it
 outRecordCount = 0;
 numOfRecordsRead = 0;
 do {
 try {
 line = br2.readLine();
 System.out.println(line);
 if (line != null) {
 numOfRecordsRead++;
 }
 if (line != null)
 {
 bw1.write(line);
 }
 bw1.newLine();
 outRecordCount++;
 } catch (Exception ex) {

int statusCode =
btn.writeExceptionRecord(BatchConstants.FATAL, "Summary
Message", ex.getMessage()+"",
BatchConstants.REPORT_TITLE, true);

 if (statusCode == -1)
 {
 ex.printStackTrace();
 btn.abort();
 System.exit(statusCode);
 }
 }

 ASPEN Batch

Architecture Guide

 Page 29 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 } while (line != null);

op1BatFile.setDBRecordCount(outRecordCount);

if (numOfRecordsRead != inp2RecCnt) {
 ip2BatFile.setDBDiscrepancyQty(inp2RecCnt - numOfRecordsRead);

 }
 String processEndTime = tbc.getTimeStamp();
 // This is to print Body Lines
 String[][] reportBodyLines =
 {
 {
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatch1.dat file", 35),
 "10000" },
 {
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatch2.dat file", 35),
 "200000" },
 {
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatchOut1.dat file", 35),
 "1245" },
 {
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatchOut2.dat file", 35),
 "21.00" },
 {
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatchOut3.dat file", 35),
 "100000.00" }
 };
 //Writing to database
 String[] reportLines =
 {
 tbc.formatString("Framework Test Summary Report", 50),
 tbc.formatString("Implementation Number", 50),
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatch1.dat file", 35)+ "10000" ,
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatch2.dat file", 35)+ "200000" ,
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatchOut1.dat file", 35)+ "1245" ,
 tbc.formatString(BatchConstants.MESSAGE1, 50)
 + tbc.formatString(" testBatchOut2.dat file", 35)+ "21.00" ,
 tbc.formatString(BatchConstants.MESSAGE1, 50)

+ tbc.formatString(" testBatchOut3.dat file", 35)+ "100000.0" ,
 };

 String[] columnTypes = {tbc.formatString(BatchConstants.REPORT_TITLE, 20),
 tbc.formatString(BatchConstants.REPORT_HEADER, 20),
 tbc.formatString(BatchConstants.REPORT_BODY, 20),
 tbc.formatString(BatchConstants.REPORT_BODY, 20)
 tbc.formatString(BatchConstants.REPORT_BODY, 20),
 tbc.formatString(BatchConstants.REPORT_BODY, 20),

 ASPEN Batch

Architecture Guide

 Page 30 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 tbc.formatString(BatchConstants.REPORT_BODY, 20)};
 tbc.generateReport(reportLines, columnTypes);

 //Testing Exception Table
tbc.writeExceptionRecord(BatchConstants.INFO, "Exception Report Title ", null,
BatchConstants.REPORT_TITLE, true);

for (int i=0; i<5; i++)

 {
tbc.writeExceptionRecord(BatchConstants.FATAL, "Exception Summary
Message "+i, "Exception Detailed Message "+i,
BatchConstants.REPORT_BODY, true);

 }
}catch(Exception e){

 btn.abort();
 e.printStackTrace();

throw new TIERSBatchException(e.getMessage());
}

 try{

 btn.commit();
 }catch(Exception e){

throw new TIERSBatchException(e.getMessage());
 }

btn.complete();
}

 /**
 * @see AbstractBatch#postProcess()
 */
 protected void postProcess() {
 }
 /**
 * @see AbstractBatch#process()
 */
 protected void process() {
 }
 /**
 * @see AbstractBatch#preProcess()
 */
 protected void preProcess() {
 }
}

2.2.4.9 Control Table

The following control table is used to store data associated with batch check point restart.

CREATE TABLE FW_BATCH_RESTART_CONTROL (
 JOB_ID VARCHAR2 (12) NOT NULL,
 AS_OF_DT DATE NOT NULL,
 RUN_NUM NUMBER NOT NULL,
 KEY VARCHAR2 (255) NOT NULL,

 ASPEN Batch

Architecture Guide

 Page 31 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 PARALLEL_RUN_ID VARCHAR2 (255) NOT NULL,
 VALUE VARCHAR2 (2000),
 CREATE_USER_ID VARCHAR2 (10) NOT NULL,
 UPDATE_USER_ID VARCHAR2 (10),
 CREATE_DT DATE NOT NULL,
 UPDATE_DT DATE,
 UNIQUE_TRANS_ID NUMBER NOT NULL,
 CONSTRAINT FW_BATCH_RESTART_CONTROL_PK
 PRIMARY KEY (JOB_ID, AS_OF_DT, RUN_NUM, KEY, PARALLEL_RUN_ID)
 USING INDEX
 TABLESPACE DEV_DATA PCTFREE 10
 STORAGE (INITIAL 655360 NEXT 655360 PCTINCREASE 0))
 TABLESPACE DEV_DATA
 PCTFREE 10
 PCTUSED 40
 INITRANS 1
 MAXTRANS 255
 STORAGE (
 INITIAL 655360
 NEXT 655360
 PCTINCREASE 0
 MINEXTENTS 1
 MAXEXTENTS 2147483645
 FREELISTS 1 FREELIST GROUPS 1)
 NOCACHE;

5. Parallel Run

Parallel Run is used by batch programs to have multiple copies of the same job running concurrently such
that each clone (which is referred to in the document as parallel run or simply as run) hits a different
dataset. Any batch program can use parallel run, but it would be primarily used by -

• Lengthy jobs that can be split into separate congruent pieces

• Jobs that lie in the critical path.

• Delay governing jobs that could potentially insert delays into the critical path.

Partitioning and parallel run are both helpful for performance improvement, but please note that parallel
runs need not have partitioned database.

2.2.5.1 Understanding Parallel Run

In Parallel Run, Opcon calls the job script with the parallelRunId. The script calls the program with job_Id
and parallelRun_Id. The abstract batch interacts with TIERSBatchController to get the parallel attributes
from FW_BATCH_PRLEL_RUN table. In most programs this would be all that is required, with the
FW_BATCH_PRLEL_RUN acting as a look up table, populated from a JSP screen. But the jobs that have
(1) multiple critical sections (2) Parent process- Child process pattern, etc, possibly would have to use
getJobParallelAttributes() and setParallelAtributes() methods to run in parallel. These methods access
FW_BATCH_PRLEL_RUN_CONTROL.

2.2.5.2 Parallelism on the Java end or on the Database end

Before getting into parallel runs it must be noted that there are two ways to get parallelism in batch. First
is the java side parallelism. In this the batch job would be split into a series of the same batch job, each a
clone of the other, but each hitting a separate partition or logical grouping in the table or the files. Second

 ASPEN Batch

Architecture Guide

 Page 32 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

is database parallelism. In this kind of parallelism, the tables will have server (Oracle)-side parallelism in-
built into it, so that your queries will fork out and run faster.
Both of these strategies are different- while the first one is parallelism in the batch program (java) side,
the second one is parallelism in the Oracle server side. In the second case, there is a single line of
execution in the java side but it becomes parallel lines of execution as and when it hits the database, and
becomes single threaded once again when execution comes back to the java side.
The second kind of parallelism would be done under the curtains for you. For the first kind of java parallel
runs, from operation management point of view, it would be good if you keep Framework, DBA, and
performance team informed of the program scenarios (in batch) where you will, if at all, go for parallel
runs. An e-mail of a very short description of a typical program, and the number of programs that will fall
under this scenario will suffice. This information will help us get a better picture of which of these above
two strategies to implement, and/or how to mix them together.

2.2.5.3 Abstract Batch

All programs implementing parallel run need to extend abstract batch. The abstract batch talks to the
batch controller (/manager) to manage the job’s parallelism. When the program calls start, the control
goes to the Abstract batch, which then checks whether the program is parallel run or not. Whether a
program is running parallel or not is decided on the criterion of whether the program called
setParallelRunId(..) on the AbstractBatch.

If it is a parallel run program then the abstract batch asks the batch manager to give it the attributes
stored for that job for that parallel run id in FW_BATCH_PRLEL table, which is a lookup table. If it finds
attributes stored for that parallel run then it does a reflection on the program’s fields and populates it with
these attributes based on the following constraints.

• Only variables beginning with “_parallelRun” are populated

• Only primitive variables and Strings are populated

• Only instance variables with public visibility are populated

It should be noted that the checkpoint piece runs after the parallel run and so it is only for the first run that
parallel run attributes are populated in the program’s relevant fields, and for the later runs of the aborted
program (if that is the case), the restart will overwrite the parallel run. Thus, parallel run and restart can
coexist and function seamlessly.

The abstractbatch does a call to getRunLookUpParallelAttributes() to get the parallel attributes for that
run from FW_BATCH_PRLEL_RUN. After it populates these values into the program’s fields (through
reflection), it also writes these attributes into FW_BATCH_PRLEL_RUN_CONTROL for that asOfDate. If
your program does any getRunParallelAttributes() or getJobParallelAttributes() it gets it from the
FW_BATCH_PRLEL_RUN_CONTROL. Unlike FW_BATCH_PRLEL_RUN, the program can write into
FW_BATCH_PRLEL_RUN_CONTROL through setParallelAttributes(). Needless to say,
FW_BATCH_RUN_CONTROL won’t regulate parallel run jobs to execute concurrently but it will stop
normal jobs to be executing simultaneously. For parallel runs it will only check whether there is a same
job with “ST” status for that parallel run id. Note that for normal jobs it doesn’t filter the status based on
parallel run id.

The following methods that are part of the Batch Framework are used in implementing parallel jobs:

getParallelRunAttributes()
This will bring the parallel attributes from FW_BATCH_PRLEL_RUN_CONTROL for that parallel run for
that asOfDate. This may be called when the parallel attributes are needed after the startup, in the middle
of the run.

getParallelJobAttributes() – Locking call
This will bring all the parallel attributes from FW_BATCH_PRLEL_RUN_CONTROL for that job as a Map;
the attributes for all the parallel runs, for that asOfDate are included in this. This is called when you want
to read all the parallel attributes of that job. This is a locking call. So, once this call is made, no other

 ASPEN Batch

Architecture Guide

 Page 33 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

parallel run can read or write these records, and all of them will wait for the parallel attributes to be
unlocked. The unlocking can be done if your write parallel attributes for the run into the database through
the setParallelAttributes() or do an explicit call to releaseJobParallelAttributesLock(). In order to avoid any
concurrency bug we are not allowing for reading the parallel attributes of the whole job outside of a
mutex.

releaseParallelJobAttributesLock()
This will release the lock on the parallelAttributes that was made by getJobParallelAttributes().

setParallelAttributes()
This puts the parallel attributes for that job for that parallelRunId only, into
FW_BATCH_PRLEL_RUN_CONTROL. This also unlocks the getJobParallelAtributes().

getLookupParallelRunAttributes ()
This will bring parallel attributes for a jobId for that parallelRunId only, from FW_BATCH_PRLEL_RUN.

setLookupParallelRunAttributes()
This will set parallel attributes for a jobId for that parallelRunId only, into FW_BATCH_PRLEL_RUN.

Exception
Exception from all the parallel runs would be written into the FW_BATCH_EXCEPTION table under the
same jobId, and the count is maintained globally in the database.

2.2.5.4 Pilot Program

You may use a pilot program to change the lookup attributes of a parallelRun Job. For this you need to
use the getParallelRunLookup and setParallelRunLookup methods. Please note that for the pilot program
you need not set ParallelRunId, as this is not a parallel run job, it is only a pilot to a parallel run job. Both
getParallelRunLookup and setParallelRunLookup are overloaded to accept jobId and parallelRunId.

2.2.5.5 Partitioning table

The DBAs need to be informed if the tables that are being accessed by the parallel run job, or any job for
that matter, are to be partitioned. Note that your DML query in the DAO doesn’t need to have partition
information if you want to hit that partition information. The query will automatically hit the right partition
depending on its filter. Oracle will take care of it. So, you can either give the partition or give a range.
Partition is needed only if you don’t want the range to be decided by the database.

2.2.5.6 Implementing Parallel Run

Some of the changes that need to be done in the program are:

1. Extend AbstractBatch.

2. Don’t instantiate TIERSBatchController.

3. Instead of calling the TIERSBatchController methods call the corresponding method of the
AbstractBatch.

4. Make the fields whose values you want to be set by the parallel job be made public and at
instance level with the prefix “_parallelRun”.

5. Do a setParallelRunId(arg[1]).

 ASPEN Batch

Architecture Guide

 Page 34 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

6. Regenerate the script to send in two parameters into the java program, first being the jobId and
the second being parallelRunId.

7. Inform operations about the number of parallel runs for a job, and the corresponding
parallelRunIds. The corresponding form will be provided.

8. Interact with DBAs to partition your concerned tables.

2.2.5.7 Lookup and Control Tables

The following control tables are used to implement parallel jobs:

CREATE TABLE FW_BATCH_PRLEL_RUN (

 JOB_ID VARCHAR2 (12) NOT NULL,

 KEY VARCHAR2 (255) NOT NULL,

 PARALLEL_RUN_ID VARCHAR2 (255) NOT NULL,

 VALUE VARCHAR2 (2500),

 CREATE_USER_ID VARCHAR2 (10) NOT NULL,

 UPDATE_USER_ID VARCHAR2 (10),

 CREATE_DT DATE NOT NULL,

 UPDATE_DT DATE,

 UNIQUE_TRANS_ID NUMBER NOT NULL,

 ARCHIVE_DT DATE,

 CONSTRAINT FW_BATCH_PRLEL_RUN_PK

 PRIMARY KEY (JOB_ID, KEY, PARALLEL_RUN_ID)

 USING INDEX

 TABLESPACE DEV_DATA PCTFREE 10

 STORAGE (INITIAL 655360 NEXT 655360 PCTINCREASE 0))

 TABLESPACE DEV_DATA

 PCTFREE 10

 PCTUSED 40

 INITRANS 1

 MAXTRANS 255

 STORAGE (

 INITIAL 655360

 NEXT 655360

 PCTINCREASE 0

 MINEXTENTS 1

 MAXEXTENTS 2147483645

 FREELISTS 1 FREELIST GROUPS 1)

 NOCACHE;

CREATE TABLE FW_BATCH_PRLEL_RUN_CONTROL (

 JOB_ID VARCHAR2 (12) NOT NULL,

 ASPEN Batch

Architecture Guide

 Page 35 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

 AS_OF_DATE DATE NOT NULL,

 KEY VARCHAR2 (255) NOT NULL,

 PARALLEL_RUN_NUM NUMBER NOT NULL,

 PARALLEL_RUN_ID VARCHAR2 (255) NOT NULL,

 VALUE VARCHAR2 (2500),

 CREATE_USER_ID VARCHAR2 (10) NOT NULL,

 UPDATE_USER_ID VARCHAR2 (10),

 CREATE_DT DATE NOT NULL,

 UPDATE_DT DATE,

 UNIQUE_TRANS_ID NUMBER NOT NULL,

 ARCHIVE_DT DATE,

 CONSTRAINT FW_BATCH_PRLEL_RUN_PK

 PRIMARY KEY (JOB_ID, AS_OF_DATE, KEY, PARALLEL_RUN_ID, PARALLEL_RUN_NUM)

 USING INDEX

 TABLESPACE DEV_DATA PCTFREE 10

 STORAGE (INITIAL 655360 NEXT 655360 PCTINCREASE 0))

 TABLESPACE DEV_DATA

 PCTFREE 10

 PCTUSED 40

 INITRANS 1

 MAXTRANS 255

 STORAGE (

 INITIAL 655360

 NEXT 655360

 PCTINCREASE 0

 MINEXTENTS 1

 MAXEXTENTS 2147483645

 FREELISTS 1 FREELIST GROUPS 1)

 NOCACHE;

 ASPEN Batch

Architecture Guide

 Page 36 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

3. FTP Receive

ASPEN files are received through FTP process. This FTP process uses various tools like asynchronous
messaging using MQSeries, PAM, etc. to reduce coupling and for effective usage of “chain of
responsibility” pattern.

3.1 Overview

The FTP Receive is initiated by external agency, who opens an FTP channel and places a file in the
ASPEN batch ftp directory. The application program itself does not have any code for FTP, PAM, and
batch Framework takes care of it. For each agency/tack PAM has a file adapter that keeps polling (with
about 1 sec frequency) for file arrivals in each agency’s/track’s directory. So there will be one PAM file
adapter for one agency/track. After the file comes in, PAM logs its arrival information in batch tables, and
puts the file in the ASPEN data directory. After this, the batch Framework hands the receive file to the
batch program to process. An overview of the FTP Receive is given. This document explains in detail the
below diagram.

 ASPEN Batch

Architecture Guide

 Page 37 of 41 New Mexico ASPEN Technical Reuse Analysis

April 17, 2012 ASPEN Batch Architecture Guide

1.Insert File Arrival Information into FW_BATCH_FTP_RUN_CONTROL and Put a copy of the file in Zip directory

Receive File

BRIDGESBATCH/PRD/batch/

ftp/Receive/(Agency Or Track

Id)/
FTP

PAM

2. Search in FW_BATCH_FTP_FILE_LOOKUP table to get the TIERS related information for that Receive File

3. Insert the Information from step 2 to FW_BATCH_FILE_CONTROL

TIERS/ENV/FunctionalAresID/

data
4. Move the Receive File to TIERS directory

5. Update FW_BATCH_FTP_RUN_CONTROL that Receive File is now ready to be processed by Batch Programs

 ASPEN Batch

Architecture Guide

 Page 38 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

FTP Receive Directory: Unzipped receive files will come in:

/ASPENBATCH/batch/ftp/receive/(agency or track specific directory)

The zipped FTP file needs to be put in:

/ASPENBATCH/batch/ftp/receive/zipped

Batch Directory: The file should then be moved from the FTP receive directory to ASPENBATCH
directory, which is:

/ASPENBATCH/ENV/(FUNCTIONAL_AREA_ID)/data

3.2 Tables

The following ER diagram explains key control tables used for managing FTP jobs.

FW_BATCH_FTP_FILE_LOOKUP, FW_BATCH_FILE and FW_BATCH_FTP_COMMAND are lookup
tables. They are pre-populated. FW_BATCH_FTP_RUN_CONTROL and FW_BATCH_FILE_CONTROL
tables are dynamic tables.

3.3 File Naming Stanards for Receive Files

ASPEN Appliation program identifies a file using LOGICAL_FILE_NAME.

 ASPEN Batch

Architecture Guide

 Page 39 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

The actual physical file name received from the interface agency is defined using the FILE_NAME in
FW_BATCH_FTP_FILE_LOOKUP and FW_BATCH_FTP_RUN_CONTROL.

TARGET_FILE_NAME in FW_BATCH_FTP_FILE_LOOKUP and FW_BATCH_FTP_RUN_CONTROL
signifies the name of the file (signified by FILE_NAME in FW_BATCH_FILE_CONTROL) in ASPEN
standards.

FILE_NAME in FW_BATCH_FILE_CONTROL is the actual logical part of the file’s name in ASPEN
standard.

Physical File Name = JOB_ID + “.” + FILE_NAME + “-“ + AS_OF_DT + “.” + RUN_NUM (Note: In
case of Send, these names signify very differently)

3.4 FTP File Handling Process

FILE_ID

In order to uniquely identify the file that is received through FTP, a FILE_ID is obtained from an Oracle
sequence. This number is used as follows:

• Name of the zip file

• FILE_ID in FW_BATCH_FILE_CONTROL and FW_BATCH_FTP_RUN_CONTROL tables

FW_BATCH_FTP_RUN_CONTROL

A record is inserted into the FW_BATCH_FTP_RUN_CONTROL with

• FILE_NAME equal to the file name of the file received through FTP

• FILE_STATUS_CD equal to “R” (for Receive)

• FILE_ID

ASPEN FILE_NAME for the Receive file

Now, PAM matches the FILE_NAME in FW_BATCH_FTP_RUN_CONTROL and the FILE_NAME in
FW_BATCH_FILE_LOOKUP to get the TARGET_FILE_NAME. The SQL is described below:

SELECT B.TARGET_FILE_NAME, B.OWNER_FA, B.AGENCY_ID

FROM

FW_BATCH_FTP_RUN_CONTROL A,

FW_BATCH_FTP_FILE_LOOKUP B

WHERE

A.FILE_ID = &FILE_ID

AND A.FILE_NAME

LIKE (SELECT '%' || B.FILE_NAME || '%' FROM dual)

The above SQL does the following:

 ASPEN Batch

Architecture Guide

 Page 40 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

• Get the record that was inserted in 2.5.1.2 into FW_BATCH_FTP_RUN_CONTROL through the
FILE_ID (which is the PK).

• Match the FILE_NAME in FW_BATCH_FTP_RUN_CONTROL with the FILE_NAME in
FW_BATCH_FTP_FILE_LOOKUP table by

FW_BATCH_FTP_RUN_CONTROL.FILE_NAME

LIKE

 (SELECT

‘%' || FW_BATCH_FTP_FILE_LOOKUP.FILE_NAME || '%'

FROM dual)

Note that we match only part of the FILE_NAME in ftp run control with FILE_NAME in ftp file lookup table.
This signifies that we are presuming that there will be a static part in all receive files that is unique across
the board, (that is, that static part won’t be shared by some other file).

For example: If the Receive file is xxNoticesDat123, then this would be inserted into

FW_BATCH_FTP_RUN_CONTROL as FILE_NAME. But, in the FW_BATCH_FTP_FILE_LOOKUP what
would be there in the FILE_NAME column (PK) would be NoticesDat. This is so because xx and 123 are
dynamic and changeable portions of the Receive file name, we got to have a static part that can be relied
upon.

FW_BATCH_FTP_RUN_CONTROL update
The TARGET_FILE_NAME in FW_BATCH_FTP_RUN_CONTROL, for that file (identified by FILE_ID) is
updated with the TARGET_FILE_NAME in FW_BATCH_FILE_LOOKUP got from above.

The TARGET_FILE_NAME in FW_BATCH_FTP_RUN_CONTROL now signifies ASPEN file name, while
FILE_NAME signifies the FTP name as it got from the external agency.

ASPENBATCH directory
The Receive File is moved to the ASPENBATCH directory based on the following information

FILE_NAME, AS_OF_DT, and RUN_NUM got from the above step

OWNER_FA that is the FUNCTIONAL_AREA_ID that will receive the file is k

FW_BATCH_FTP_RUN_CONTROL update
Update the FILE_STATUS_CD in FW_BATCH_FTP_RUN_CONTROL with “P” to signify that the FTP file
has been processed by PAM and put into the ASPENBATCH world for Batch programs to pick up.

Send Acknowledgement back
For some Receive Files, an ACK file needs to be sent to the agency that FTPed the file. PAM will go to
FW_BATCH_FTP_COMMAND and execute the commands therein. For a more detailed explanation,
please refer TB 33-Batch FTP send.

Batch program

When the Batch Program is kicked off by OPCON, it identifies Input Files of whether they are Receive
Files (FTPed from external source), or not by the “R” value in the STATUS_CD. The Batch Framework
does this job for the Batch Program, and it treats Receive files differently than internal ASPENBATCH
generated file, as is described below:

 ASPEN Batch

Architecture Guide

 Page 41 of 41 New Mexico ASPEN

April 17, 2012 ASPEN Batch Architecture Guide

• In case of ASPENBATCH internal file, the batch Framework picks up the maximum file, that is the
file with the maximum RUN_NUM of the maximum AS_OF_DATE (that is if AS_OF_DATE is not
specified), in FW_BATCH_FILE_CONTROL.

• In case of Receive File, the batch Framework picks up the minimum file, that is the file with the
minimum RUN_NUM of the minimum AS_OF_DATE (that is if AS_OF_DATE is not specified),
where STATUS_CD =”R”, in FW_BATCH_FILE_CONTROL.

• When the batch Program calls the Stop, for all Receive File that the Batch Framework has read, it
flips the STATUS_CD in FW_BATCH_FILE_CONTROL from “R” to “P”.

