

Contract No. PSC 12-630-4000-0001

Deliverable A4

Technical Plan - Technical

Architecture Plan

Appendix B – FAST4J Online

Version 1.2

 FAST4J Online

Document Control

Page 2 of 116 New Mexico ASPEN
Online Fast4J Express

Document Control Information

Document Information

Document Identification FAST4J Online

Deliverable Name and Task

Item

Sub Task Item

Project Name New Mexico ASPEN

Client State of New Mexico - Human Services Department

Document Author Prasad Yarlagedda

Document Version 1.1

Document Status Design Phase Submission

Date Released June 1 2012

Response Due Date

File Name
Deliverable A4_Technical Architecture Plan-Appendix B FAST4J
Online_v1.1.doc

Document Edit History

Version Date Additions/Modifications Prepared/Revised by

1.0 03/22/2012 Design Phase submission Prasad Yarlagedda

1.1 06/01/2012 Incorporated Design Phase
comments

Prasad Yarlagedda

1.2 05/16/2022 Updated/Removed incorrect
referenced in the document

Harsha Devaraj

Document Review/Approval History

Date Name Organization/Title Comments

Contract No. PSC 12-630-4000-0001

Table of Contents

Fast4J Usage Patterns .. 5

1. Introduction ... 6
1.1 Basic Architecture and Dependencies ... 6
1.2 A Typical Application Architecture .. 7

2. Fast4J Core Features .. 8
2.1 Identification Interface ... 9
2.2 UUID Interface .. 9

2.2.1 OID .. 9
2.2.2 UUIDGenerator .. 10

2.3 Validation Interface .. 11
2.4 DomainObject Interface ... 13

2.4.1 AbstractDomainObject.. 14
2.5 DomainAttribute .. 15
2.6. Loader Interface .. 19

2.6.1. Using Loaders for configuration .. 19
2.6.2. AggregateLoader ... 19

2.7. Filter Interface ... 20
2.7.1. DomainObjectFilter... 20

2.8. SimpleObjects ... 21
2.8.1. SimpleFilter Interface ... 22
2.8.2. SimpleObjectAccess .. 22

2.9. Document Interface ... 23
2.10. Command Interface .. 26

2.10.1. CommandList .. 28
2.10.2. CommandManager .. 29

2.11. Population, Converter, and Mapper Interfaces .. 30
2.11.1. DefaultPropertyPopulator... 32
2.11.2. ObjectPopulator ... 35

3 Fast4J Persistence Features .. 38
3.1 DataAccessObject Interface .. 38
3.2 A word about database sequences .. 38
3.3 Using the Fast4J Persistence Layer... 38

3.3.1 AbstractDAO .. 39
3.3.2. Defining DataSources... 43
3.3.3 DAO Registration ... 44
3.3.4 Memory-Sensitive Caching ... 44
3.3.5 File-Based Configuration .. 45

3.4. Basic O/R Mapping ... 47
3.3.1 ResultSetProcessor .. 47
3.3.2 ResultSet Handling... 52

3.5. Filtering DomainObjects .. 54
3.6. Advanced O/R Mapping... 55

3.6.1. Parent-Child Relationships ... 55
3.6.2. Multi-Table Joins .. 60

3.7. Persistence Commands... 62
3.7.1. CreateObjectCommand .. 63
3.7.2. UpdateObjectCommand ... 63
3.7.3. DeleteObjectCommand .. 63

Document Control

Page 4 of 116 New Mexico ASPEN
Online Fast4J Express

3.7.4. UpsertObjectCommand .. 63
3.7.5. Transactions and PersistenceCommandManager ... 64

3.8. Adhoc SQL .. 66
3.8.1. SQLUpdate .. 67
3.8.2. SQLQuery .. 67
3.8.3. SQLCommand ... 68
3.8.4. Executing SQLCommands with SQLCommandManager ... 68

4. Fast4J Services ... 70
4.1. Service Interface ... 70
4.2. Using the Fast4J Service Layer ... 71

4.2.1 Service Registration ... 71
4.2.2. Configuration .. 72
4.2.3. Consuming webservices ... 73
4.2.4. Implementing using JAX-WS .. 74
4.2.5. Implementing using AbstractHTTPUrlService ... 75

5. Fast4J Presentation Features ... 79
5.1. Enhanced Session Management ... 79

5.1.1 HttpSessionListener ... 79
5.1.2. SessionObject Interface ... 80

5.2. Pagination ... 82
5.3. Custom Tags ... 85
5.4. AJAX Support.. 86
5.5. Integration with Web Frameworks .. 89

6. Code Generation ... 92
6.1. Downloading the Plug-In.. 92
6.2. Databases Supported .. 96
6.3. Configuring the Plug-in .. 96
6.4. Preserving Business Logic .. 106

7. Integrating Fast4J with EJB.. 107
7.1. DAO Registration in EJB ... 107
7.2. Stateless Session Beans ... 107
7.3. Message-Driven Beans ... 110
7.4. Transaction Management .. 112

7.4.2. Using Container transaction management in SLSB ... 112
7.4.3. Using Fast4J Transaction Management in SLSB .. 115

Document Control

Page 5 of 116 New Mexico ASPEN
Online Fast4J Express

Fast4J Usage Patterns

There are several basic usage patterns for the Fast4J Framework. This diagram indicates how an
application development team would interact with the Fast4J framework. There are four scenarios
that represent these interactions.

Scenarios 1-3 : In each of these scenarios, Fast4J Provides an interface to be
implemented:

(1) Fast4J also provides the abstract implementation with an expectation that the
application will provide the final class.

(2) The application provides the implementation for the interface without
extending a Fast4J class.

(3) Fast4J provides the final, default implementation with the expectation that it
will fulfill the needs of the application, and will not need to be extended.

Scenario 4 : Fast4J provides a utility class that is the final implementation and can be
used as-is by the application. Typically these classes are final because the framework
heavily relies on their implementation to perform its work.

Contract No. PSC 12-630-4000-0001

1. Introduction

1.1 Basic Architecture and Dependencies

Fast4J is designed to provide the application architect with a high degree of flexibility. It facilitates
best practices in multi-tier application design, and can be used in almost any environment. The
Fast4J framework is not tied to any particular 3rd-party technology (such as JSF, EJB, Spring,
Struts, etc), does not require use of any particular application server, vendor software, or open-
source tools. Most components of the framework do not even require a JEE environment. In fact,
the only piece of software needed to implement an application in Fast4J is a Java runtime
environment. The most recent releases of the framework require a Java 1.5 JRE, but the
framework is still supported and available for running in Java 1.4 environments with previous
releases.

The Fast4J framework is distributed in four components: Core, Persistence, Presentation, and
Service and implements a MVC (Model View Controller) design pattern. The Core component’s
only software requirement is a compliant JRE. The latter three components are dependent on a
Java environment and the Core component. The following is a graphical depiction of the
dependency relationships in and application built with the framework.

While Fast4J is not dependent upon any 3rd-party tools, it does work synergistically with these
solutions. The goal of the framework implementation was not to compete with or take the place of
any tools or technologies in the JEE stack or available in OSS or common vendor solutions.
Rather, it was designed to complement any of these tools. As such, the framework will work with
with just about any technology stack, be you are using EJBs, POJOs, Spring, Struts, JPA or other

Application

Code

Java

Fast4J

Core

Fast4J

Presentation

Fast4J

Service

Fast4J

Persistence

3
rd

 Party

Libraries

Client Code

Fast4J Core Features

Document Control

Page 7 of 116 New Mexico ASPEN
Online Fast4J Express

O/R Mapping tools, JSF, etc. In fact, the Framework has had previous implementations on all the
aforementioned tools.

Fast4J is packaged with a single jar file for each of these four component parts. In addition,
additional jars are provided with the full framework source code, the full framework Javadoc, and
the full JUnit automated test suite for the entire framework:

1.2 A Typical Application Architecture

Fast4J builds upon the fundamentals of a robust, service-oriented, n-Tier solution, with the
explicit separation of presentation content, business logic and data objects. The proposed
application architecture employs the industry recommended application infrastructure that has
been tested and proven on other applications of similar size and complexity. The diagram below
depicts a typical Fast4J application architecture at a high level. The details of the various
components will be covered in later chapters in this book.

Source

Doc

Presentation

Core

Tests

Persistence

Service

Presentation Layer

Property Mapping

Business Layer

Validation Framework

Business Services

Persistence Layer

Data Access Objects

XA Transactions

UI Clients

Relational

Data

Domain Objects

Services

Services Framework

Skljfklaslfjlsajflkasjfkjasfja;ldfj

Assdlfaslfaslfkjlsadfljsasld

dSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

Skljfklaslfjlsajflkasjfkjasfja;ldfj

sdfAslfaslfaslfkjlsadfljsasld

cxSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

Skljfklaslfjlsajflkasjfkjasfja;ldfj

Assdlfaslfaslfkjlsadfljsasld

dSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

Skljfklaslfjlsajflkasjfkjasfja;ldfj

sdfAslfaslfaslfkjlsadfljsasld

cxSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

Skljfklaslfjlsajflkasjfkjasfja;ldfj

Assdlfaslfaslfkjlsadfljsasld

dSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

Skljfklaslfjlsajflkasjfkjasfja;ldfj

sdfAslfaslfaslfkjlsadfljsasld

cxSlkafjkldsjflasjldfjasd

Asfjasljdflasglknladsnslaf

Lkasjfljasldfjasldfjlasdfj

Asfjasldfjlkasjdflkjasl

XML and

Configuration

Data

Sorting and Pagination Ad-hoc Querying

Commands

Transactions

Memory-Sensitive

Caching

3
rd

 Party Report

Integration

Enhanced Exception Handling

Configuration Framework

JSPs/Servlets

Service Implementation

Service Clients

Common Business

Objects

O/R Mapping

EJBs

Feature provided by Framework

Provided outside framework

Reference Data

Framework

JSF Components

Fast4J Core Features

Document Control

Page 8 of 116 New Mexico ASPEN
Online Fast4J Express

2. Fast4J Core Features

The key to a well-designed object-oriented system is a strong domain model. Fast4J is designed
and organized with this concept in mind. The Fast4J Core component has interfaces and
implementations that help projects build a structured domain model. Fast4J Core also includes
common business objects used across various industries.

Functionility and Features of Express Core

▪ All other deployment units are based on Core
▪ Contains all basic interfaces of the system
▪ Contains abstract and default implementations for many base objects in the

framework (DomainObject, SimpleObject & DomainAttribute etc.,)
▪ Provides facilities for marshalling and unmarshalling of data
▪ Contains tools for system configuration
▪ Provides utilities and helper classes

There are three basic object types defined in ExpressCore, which will be discussed below:

1. DomainObjects – Modeled on nouns (Persons, places and things)
2. DomainAttributes – Modeled on adjectives (Describes DomainObjects)
3. SimpleObjects – Reference Data

<Note>
Other components have
only one-way dependency
to ExpressCore

Fast4J Core Features

Document Control

Page 9 of 116 New Mexico ASPEN
Online Fast4J Express

2.1 Identification Interface

Each object in an object-oriented system is an instance of a particular class. Each of these
instances may represent different logical entries in the system (i.e. 2 different insurance claims),
or may represent multiple versions of the same entry (for example, 2 object instances both with
data for insurance claim #3245). There must be a mechanism to differentiate between these
different instances in the system, and also to tell when different instances are referring to the
same piece of data (the same insurance claim, for example). Once these instances of classes are
uniquely identified, it is easier for other actions to operate on them. For example, it would be
much easier to store and retrieve object instances in a database when there is a unique way to
identify each object.

ExpressCore provides the Identification interface for that purpose. Any object that is required to
be identified in the system should implement this interface, along with its getID() method.

public class Customer implements Identification {

 public UUID getID() {

 // A new Unique ID will be generated every time

 return new OID();

 }

}

2.2 UUID Interface

The return type from the getID method is the UUID interface. This is an acronym for ‘Universally
Unique Identifier’. A UUID could have many different potential implementations (backed by
strings, numeric IDs, composite key values, etc.), so long as they keys support uniqueness and
are comparable.

public interface UUID extends Serializable, Comparable<UUID> {

 public Object getValue();

}

Note that any object implementing UUID must also implement the Comparable interface.

2.2.1 OID

ExpressCore provides the OID class (short for ‘Object Identifier’) as a default implementation of
UUID. This implementation of UUID is sufficient for most projects. It provides a system-
generated, globally unique key which can be used to distinguish any object instance in the
application. Below is an example of a Customer class that can be identified using the default OID
implementation.

public class Customer implements Identification {

 private UUID customerID;

 /* Creating an object for the first time - new customer */

 public Customer() {

 this(new OID());

 }

Fast4J Core Features

Document Control

Page 10 of 116 New Mexico ASPEN
Online Fast4J Express

 /* Constructing an customer object with key */

 public Customer(UUID id) {

 this.customerID = id;

 }

 /* Constructing an customer object with key */

 public Customer(String id) {

 this(new OID(id));

 }

 public UUID getID() {

 return customerID;

 }

}

The OID class is an immutable object. It provides only two constructors. The default constructor
generates a new value upon instantiation, and the non-default one takes in a known value. The
OID object is immutable, so there is no way to modify the value of an OID object after it is
instantiated.

In most cases, the default implementation provided by OID is sufficient, but it has several
limitiations that should be considered.

2.2.2 UUIDGenerator

The UUIDGenerator is the default factory used to generate UUIDs in Fast4J. It does this by
creating a 19 character string in the following format:

OID Generation Rules

Prefix Suffix Random
System Time in Millis Incremental count from 0000-9999 00-99

Length=13 Length=4 Length=2

Example

1152211299877 0000 99

If there was a request to create two OID’s within one millisecond on the system, the suffix would
ensure the values are still distinct, up to 10,000 generated OIDs in a single millisecond. As the
kind of performance necessary to achieve this volume of object instantiations in a typical
application is virtually unattainable on current hardware platforms, this virtually ensures
uniqueness.

In addition to the suffix there is also a random number component to the algorithm. Random
numbers between 0 and 99 are generated and added to the number. This further insures
uniqueness due to generations volumes. In addition, this helps in using the OID on a clustered
environment to avoid duplications.

If more reliability than this is needed, it is recommended that a UUID generator be used using the
128 bit algorithm (36 byte string) as specified by RFC4122.

There are some narrow cases where the default generation strategy might not be appropriate.
For instance, if you have an existing database where the primary key attribute length is less than
19, the generated values might not fit. Similarly, if you have technical requirements that dictate
primary keys conform to a certain structure, a different generation strategy will be necessary.
Fast4J is flexible in that it allows you to provide your own implementation of the default
generation scheme, and both of these can be accommodated.

Fast4J Core Features

Document Control

Page 11 of 116 New Mexico ASPEN
Online Fast4J Express

2.3 Validation Interface

Any domain object in the system should be able to answer the question: “Are you valid?”. These
types of questions make up the essence of most business processing. By implementing the
Validation interface, objects can respond to the business questions in a consistent manner across
the system.

When asking the question, “Are you valid?”, there is always an implicit part of the question which
is “…for this context”. ExpressCore provides the Intent interface that can be used to define the
context of the validation. The default implementation of Intent is the ValidationIntent class which
represents the four most common scenarios in which validation is required:

▪ Read
▪ Insert
▪ Update
▪ Delete

You may recognize the ValidationIntents as the basic CRUD operations that make up the
preponderance of work most business systems perform. Other implementations of intent can be
used by the implementor to represent other business contexts.

The Validation interface defines the contract to validate an object based on the Intent of that
object and return an error message to the caller. Validation is triggered by calling the
Validation.getValidationErrors(Intent) method. The return type of the getValidationErrors method
is Collection<Error>. Below is an example validation on our example Customer object. The
validation here specifies that if the Intent of this object is Insert, meaning it is a new object, the
first and last names of the customer can not be empty.

public class Customer implements Validation {

 private String firstName;

 private String lastName;

 // Default and non-default Constructors

 public Customer() {

 super();

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public Collection<Error> getValidationErrors(Intent intent) {

 Collection<Error> theErrors = new ArrayList<Error>();

 /**

 * Validation for INSERT

Fast4J Core Features

Document Control

Page 12 of 116 New Mexico ASPEN
Online Fast4J Express

 */

 if(intent == ValidationIntent.INSERT){

 if(Strings.isEmpty(firstName)){

 theErrors.add(new Error("Firstname cannot be empty"));

 }

 }

 /**

 * Similarly you can implement for the other intents like SELECT, DELETE and UPDATE

 * or any Custom Intent

 *

 */

 return theErrors;

 }

}

A typical usage pattern is to have the errors propagated back to the UI. This interaction where
errors are sent back to the presentation layer would look like the following in a Struts
implementation.

In this example, the validation is triggered in the business service as follows:

Fast4J Core Features

Document Control

Page 13 of 116 New Mexico ASPEN
Online Fast4J Express

//Business Layer Service Implementation

public class CustomerService {

 public Collection<Error> addCustomer(Customer customer){

 Collection<Error> errors = customer.getValidationErrors(ValidationIntent.INSERT);

 if(errors.size()==0) {

 // Do something like persist to the database

 // for example: customerDao.add(customer);

 }

 return errors;

 }

}

The Struts action class would invoke the business service and handle the errors in a fashion
similar to propagating any validation errors back to the presentation layer:

public class CustomerAction extends DispatchAction {

 public ActionForward create(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 Customer aCustomer = null;

 // Convert ActionForm parameters into Customer object

 // aCustomer = mapToCustomer(form);

 Collection<Error> theErrors = new CustomerService()

 .addCustomer(aCustomer);

 if (theErrors.size() > 0) {

 ActionErrors errors = new ActionErrors();

 for (Iterator<Error> i = theErrors.iterator(); i.hasNext();) {

 Error error = i.next();

 errors.add(ActionErrors.GLOBAL_MESSAGE, new ActionMessage(

 "errors.invalid", error.toString()));

 }

 saveMessages(request, errors);

 return mapping.findForward("failure");

 } else {

 return mapping.findForward("success");

 }

 }

}

2.4 DomainObject Interface

The DomainObject interface in ExpressCore is the fundamental building block of Fast4J
applications. Once the entities in the system are identified (e.g. Account, Customer, Employee,
Invoice, etc), they will need to be created as classes. Each of these classes should implement the
DomainObject interface.

The DomainObject interface extends both the Validation and the Identification interfaces;
therefore any class that implements the DomainObject interface can be identified and validated

Fast4J Core Features

Document Control

Page 14 of 116 New Mexico ASPEN
Online Fast4J Express

as discussed previously. Below is the class diagram that shows the structural view of a Fast4J
DomainObject:

In the next sections we will discuss the classes depicted in the above diagram in detail and see
how DomainObjects are created around them.

2.4.1 AbstractDomainObject

ExpressCore provides a default implementation of the DomainObject interface which is the basis
for custom classes developed in an application. The class is AbstractDomainObject, and as the
name indicates, it is abstract and incomplete. It is up to the subclass implementor to provide the
final implementation to make the application’s domain objects truly useful.

The following code illustrates the implementation of Customer object created in the previous
examples

public class Customer implements Validation{

 private String firstName;

 private String lastName;

 // Default and non-default Constructors

 public Customer() {

 super();

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

Fast4J Core Features

Document Control

Page 15 of 116 New Mexico ASPEN
Online Fast4J Express

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public Collection<Error> getValidationErrors(Intent intent){

 Collection<Error> theErrors = new ArrayList<Error>();

 /**

 * Validation for INSERT

 */

 if(intent == ValidationIntent.INSERT){

 if(Strings.isEmpty(firstName)){

 theErrors.add(new Error("Firstname cannot be empty"));

 }

 }

 /**

 * Similarly you can implement for the other intents like SELECT, DELETE and UPDATE

 * or any Custom Intent

 *

 */

 return theErrors;

 }

}

AbstractDomainObject implements the Identification and Comparable interfaces, as well as the
hashCode() operation required for Serializable Java objects. Due to this, the only further additions
necessary to make a fully-developed domain object are:

1. Definition of the two constructors (one for new objects and one for pre-existing domain
objects with an already assigned UUID)

2. Implementation of the getValidationErrors(Intent intent) method
3. Addition of private fields and accessors/mutators for the DomainObject properties (aside

from ID provided by AbstractDomainObject)

The default implementations provided by AbstractDomainObject for the equals() and hashCode()
contracts are based on the UUID. This means that if two objects have the same id, they are
considered equal objects. This is what’s known as semantic equivalency, as opposed to the
default Java equivalency which is identity equivalency. Identity equivalency means that both
objects are in the same memory location, whereas semantic equivalency says if two objects have
the same key (ie. CustomerID) they represent the same object.

2.5 DomainAttribute

Many of the attributes we have seen on DomainObjects so far have been simple attributes storing
things such as names or dates of birth. Often, though, DomainObject classes will contain more
complex attributes which require more sophisticated and intricate validation operations. For
attributes with this greater complexity, it can be convenient to model them with the
DomainAttribute interface. The DomainAttribute interface (shown below) extends Validation. As
such, implementing a DomainObject property as a DomainAttribute facilitates reuse of the
validation operation, which is now extracted into its own class.

public interface DomainAttribute extends Validation {

 public Collection<Error> getValidationErrors();

Fast4J Core Features

Document Control

Page 16 of 116 New Mexico ASPEN
Online Fast4J Express

 public String toDisplay();

 public String toDisplay(Format format);

 public Object getValue();

}

The classic example of such an attribute is a Social Security Number. The validation for this is
quite intricate, and makes sense to be made available for reuse across multiple DomainObjects
(in fact Fast4J provides an implementation in the SocialSecurityNumber class).

public class SocialSecurityNumber implements DomainAttribute, Comparable<SocialSecurityNumber> {

 private String ssn;

 private static Set<String> invalid = new HashSet<String>();

 static {

 invalid.add("111111111");

 invalid.add("123456789");

 invalid.add("333333333");

 invalid.add("078051120");

 }

 public SocialSecurityNumber(String ssn) {

 if (null == ssn) {

 throw new IllegalArgumentException(

 "Unable to create null or Empty Social Security Number");

 }

 this.ssn = ssn;

 }

 public Collection<Error> getValidationErrors(Intent intent) {

 return getValidationErrors();

 }

 public Collection<Error> getValidationErrors() {

 Collection<Error> theList = new ArrayList<Error>();

 char[] charArray = Arrays.copyWithout(ssn.toCharArray(), '-');

 if (charArray.length != 9) {

 // Considered fatal

 theList.add(new Error("Length of Social Security Number must be 9"));

 return theList;

 }

 StringBuffer msg = new StringBuffer("Invalid character(s) found[");

 boolean found = false;

 String seperator = "";

 for (int i = 0; i < charArray.length; i++) {

 if (!Strings.isNumber(charArray[i])) {

 found = true;

 msg.append(seperator + charArray[i]);

 seperator = ",";

 }

 }

 if (found) {

Fast4J Core Features

Document Control

Page 17 of 116 New Mexico ASPEN
Online Fast4J Express

 msg.append("] in Social Security Number");

 theList.add(new Error(msg.toString()));

 }

 String areaNumber = "" + charArray[0] + charArray[1] + charArray[2];

 String groupCode = "" + charArray[3] + charArray[4];

 String serialNumber = "" + charArray[5] + charArray[6] + charArray[7]

 + charArray[8];

 if ("000".equals(areaNumber)) {

 theList.add(new Error("First 3 digits of Social Security Number can not be 000"));

 }

 if ("666".equals(areaNumber)) {

 theList.add(new Error("First 3 digits of Social Security Number can not be 666"));

 }

 if ("0000".equals(serialNumber)) {

 theList.add(new Error("Last 4 digits of Social Security Number can not be

0000"));

 }

 if (areaNumber.startsWith("8") || areaNumber.startsWith("9")) {

 theList.add(new Error("First digit of Social Security Number can not be 8 or 9"));

 }

 String fullNumber = Arrays.get(charArray, "");

 if (invalid.contains(fullNumber)) {

 StringBuffer message = new StringBuffer();

 message.append(areaNumber + "-");

 message.append(groupCode + "-" + serialNumber);

 message.append(" is an Invalid Social Security Number");

 theList.add(new Error(message.toString()));

 }

 return theList;

 }

 public String toDisplay() {

 return new SocialSecurityNumberFormat("###-##-####").format(this);

 }

 public String toDisplay(Format format) {

 return format.format(this);

 }

 public String toString() {

 return ssn;

 }

 public Object getValue() {

 char[] charArray = Arrays.copyWithout(ssn.toCharArray(), '-');

 return Arrays.get(charArray, "");

 }

Fast4J Core Features

Document Control

Page 18 of 116 New Mexico ASPEN
Online Fast4J Express

 public int compareTo(SocialSecurityNumber that) {

 return ((String) this.getValue()).compareTo((String) that.getValue());

 }

}

Below is an example of Customer with a SocialSecurityNumber as a property.

public class Customer extends AbstractDomainObject {

 private static final long serialVersionUID = 6656510276541758136L;

 private String firstName;

 private SocialSecurityNumber ssn;

 // Default and non-default Constructors

 public Customer() {

 super();

 }

 public Customer(UUID id) {

 super(id);

 }

 public SocialSecurityNumber getSsn() {

 return ssn;

 }

 public void setSsn(SocialSecurityNumber ssn) {

 this.ssn = ssn;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public Collection<Error> getValidationErrors(Intent intent){

 Collection<Error> theErrors = new ArrayList<Error>();

 /**

 * Validation for INSERT

 */

 if(intent == ValidationIntent.INSERT){

 if(Strings.isEmpty(firstName)){

 theErrors.add(new Error("Firstname cannot be empty"));

 }

 // adding the DomainAttribute Validation Errors

 theErrors.addAll(ssn.getValidationErrors());

 }

 return theErrors;

 }

Fast4J Core Features

Document Control

Page 19 of 116 New Mexico ASPEN
Online Fast4J Express

}

2.6. Loader Interface

Systems typically need to load some sort of data at startup, this data can be configuration data,
reference data, or other values supplied at runtime that are needed for the functioning of the
system. Fast4J provides a Loader interface to accomplish this.

Most widely used scenario’s are

• To Load simple objects that may be used for look up data for Example Priorities (LOW,
MEDIUM, HIGH).

• For configure Data Access Objects and Service Objects. For more information please
refer to the Section 3.3.5.

public interface Loader {
 public void loadValues() throws CheckedApplicationException;
}

Examples of classes utilizing the loader interface are the Loaders which are used for configuring
the Fast4J persistence objects. For more information please refer to the sections 3.3.5 and 4.2.1

2.6.1. Using Loaders for configuration

Enterprise systems typically need to provide late-binding information that allows the system to be
configured from one environment to another without recompiling the code. Examples of this
include DataSources, URI’s, file locations, external data, etc.

The configuration framework allows this to be handled in a number of ways that can be tailored to
the application’s needs. The framework provides loaders which support file-based configuration in
both XML and properties-file formats. File based configuration allows the settings to be
maintained externally and modified without change to the application code. This also allows
configuration values to be updated independently of application code so that the configuration
changes can be deployed into an environment without changing the code. Thus, if file based
configuration (or another external mechanism) is not utilized, then the build process must address
packaging the environment-specific files.

Multiple Loaders can be executed in order. The Loaders are written to load several types of
information that Fast4J needs for various parts of the system. They typically handle the file-based
configuration of the system which can be specified in either XML or property files. Multiple files
can be used specify the configuration.

2.6.2. AggregateLoader

AggregateLoaders load other Loaders, i.e. a class which extends Loader interface and typically
loads reference data in to SimpleObjects. For example United States, Priorities. These Loaders
can also be used to load some master data which can’t be changed in the application.

There are two types of AggregateLoaders which initializes loders from propertyfile and XML files,
they are PropertiesAggregateLoader and XMLAggregateLoader respectively.

PropertiesAggregateLoader initializes a loader specified in a property file, the keys must begin
with the literal string ‘loader’, anything after that but before the ‘=’ is ignored.

Fast4J Core Features

Document Control

Page 20 of 116 New Mexico ASPEN
Online Fast4J Express

XMLAggregateLoader initializes a loader specified in a ‘loader’ element of a XML file,

2.7. Filter Interface

There are times when the decision to return an object in a Collection can not be made until the
object has been fully populated. This is also often the case with operations in the persistence
layer. In other words, the SQL that generated the object is insufficient to limit the returned results.
An example might be where you only want to return the first object of a specific type when there
can be multiple returns. Fast4J solves this problem via Filter objects.

2.7.1. DomainObjectFilter

The DomainObjectFilter class is an implementation of Filter<DomainObject> which by default
includes all objects. A subclass could override this functionality to optionally return objects.

Here is an example of a Filter that returns Customer objects with no last name

This Filter could be used as follows to create define a business operation that will return a subset
of a list of customers.

loader1= com.deloitte.common.fast4jsamplecode.chapter3.Priorities
loader2= com.deloitte.common.objects.business.UnitedStates

new PropertiesAggregateLoader(
 "/com/deloitte/common/fast4jsamplecode/chapter3/FileName.properties").loadValues();

<load>
<loader classname="com.deloitte.common.objects.business.UnitedStates"/>
</load>

new XMLAggregateLoader(
 "/com/deloitte/common/fast4jsamplecode/chapter3/FileName.xml").loadValues();

public interface Filter<T> {
public boolean include(T theObject);
}

public class CustomerNoLastNameFilter extends DomainObjectFilter<Customer> {

public boolean include(Customer theObject){

return Strings.isEmpty(theObject.getLastName());

}

}

public class CustomerService {

 public Collection<Customer> getCustomers(Filter<Customer> filter){

 //Retrieve the customers from the persistence

Fast4J Core Features

Document Control

Page 21 of 116 New Mexico ASPEN
Online Fast4J Express

Here is how we call the above method with our CustomerNoLastNameFilter to get a list of
customers those who have no LastName:

Other filters could be defined, such as filters to only include Customers whose whole name starts
with a certain letter, or whose account balance is of a particular value. These could all be passed
into the getCustomers() method, effectively parameterizing our business operation.

Filters are used in this manner for operations in the Fast4J Persistence components. For more
information on usage of Filters at Perfistence please refer to the section 3.5.

2.8. SimpleObjects

Almost every application has the need to provide lists of “lookup” data values (sometimes referred
to as “reference” or “LOV” data). This is relatively static data that is usually treated as read-only
outside the applications’ administrative function. Typically, it is used to populate selectable lists of
values or to specify other read-only data which should not be hard-coded into the application.
This is the data that must be retrieved from persistence, but is not treated as a full-fledged first-
order object in the system. The Fast4J framework provides the SimpleObject interface to
represent this data.

The primary differences between a SimpleObject and a DomainObject are that SimpleObjects do
not have any built-in notion of identity and do not support validation. This is because
SimpleObjects are read-only constructs, for which both of these capabilities are irrelevant.
Rather, the SimpleObject interface supports storage of a name-value pair, along with another
identifier that can be used to identify the object type. The following is the SimpleObject interface:

public interface SimpleObject extends Comparable<SimpleObject> {

 public String getType();

 public String getName();

 public String getValue();

}

The type property is the way to distinguish between different sets of the SimpleObject name-
value pairs. For instance, you could have multiple SimpleObjects with a type “status’, with
name/value pairs such as [“HIGH”/”5”], [“MED”/”3”], [“LOW”/”1”] etc; and you could have another
set with a type of “gender” and name/value pairs [“female”/”1”], [“male”/”0”].

Fast4J also provides a default implementation of the SimpleObject interface, the class
DefaultSimpleObject. It is a simple bean-like implementation of the SimpleObject interface. Along

 // for Ex: custDAO.getCustomers();

 Collection<Customer> theCustomers = getCustomers();

 Collection<Customer> theResults = new ArrayList<Customer>();

 for(Customer customer:theCustomers){

 if(filter.include(customer)){

 theResults.add(customer);

 }

 }

 return theResults;

 }

}

Filter<Customer> theCustomerNoLastNameFilter = new CustomerNoLastNameFilter();

CustomerService theCustomerService = new CustomerService();

Collection<Customer> customers = theCustomerService.getCustomers(theCustomerNoLastNameFilter);

Fast4J Core Features

Document Control

Page 22 of 116 New Mexico ASPEN
Online Fast4J Express

with implementing the equals(), compareTo(), and hashCode() methods, it also allows a flag to be
set to indicate if the data stored in it is case-sensitive.

Here is an example of using DefaultSimpleObject

// new DefaultSimpleObject(type, key, value, isCaseSensitive);

SimpleObject HIGH = new DefaultSimpleObject("Priorities","HIGH","5");

SimpleObject MEDIUM = new DefaultSimpleObject("Priorities","MED","3",true);

SimpleObject LOW = new DefaultSimpleObject("Priorities","LOW","1");

2.8.1. SimpleFilter Interface

Fast4J provides a SimpleFilter interface to filter SimpleObjects. Classes implementing this
interface may be used analogously to those implementing Filter, only the filtering is applied to
SimpleObject operations. There is a default implementation provided; SimpleObjectFilter. It
returns SimpleObjects that have a value matching a particular String pattern that “starts with”. As
an example, here is a code that returns States that begin with “W”.

Here is the output when the above example is executed:

2.8.2. SimpleObjectAccess

The SimpleObjects are used with SimpleObjectAccess. The SimpleObjectAccess interface
provides mechanism to fetch the SimpleObjects based on the SimpleObject type and name or by
SimpleObjectFilter. Fast4J provides a default implementation of the SimpleObject Access, the
class SimpleObjectAccessor. Framework uses this class to store and fetch the SimpleObjects in
conjuection with the loaders.

The following code illustrates how the Priorities SimpleObject object is created

public class Priorities implements Loader {

public class UnitedStatesFilter {

 public static void main(String args[]) {

 try {
 // Initialize
 UnitedStates.getInstance().loadValues();
 // Print States that begin with "W"
 SimpleFilter simpleFilter = new SimpleObjectFilter("UnitedStates",
 "W", false);
 Collection<SimpleObject> simpleObjects = SimpleObjectAccessor
 .getInstance().getAll(simpleFilter);
 for (SimpleObject simpleObj : simpleObjects) {
 System.err.println("<State>" + simpleObj.getValue());
 }
 } catch (CheckedApplicationException e) {
 e.printStackTrace();
 }
 }
}

<State>Washington
<State>West Virginia
<State>Wisconsin
<State>Wyoming

Fast4J Core Features

Document Control

Page 23 of 116 New Mexico ASPEN
Online Fast4J Express

 private static Loader me = new Priorities();

 public static final SimpleObject HIGH = new DefaultSimpleObject(getType(),"HIGH","5");
 public static final SimpleObject MEDIUM = new DefaultSimpleObject(getType(),"MED","3");
 public static final SimpleObject LOW = new DefaultSimpleObject(getType(),"LOW","1");

 private Priorities() {
 }

 public static Loader getInstance(){
 return me;
 }

 public void loadValues() throws CheckedApplicationException {
 for (Iterator<SimpleObject> i = getValues().iterator(); i.hasNext();){
 // Here is where we add these values to the SimpleObjectAccessor
 // all SimpleObjectAccess goes through one place, so we keep
 // reference data in one location
 SimpleObjectAccessor.getInstance().add(i.next());
 }
 }

 public static final String getType() {
 return "Priorities";
 }

 public static final SimpleFilter getFilter() {
 // to retrieve values of only this type from the accessor
 return new SimpleObjectFilter(getType());
 }

 private static Collection<SimpleObject> getValues(){
 List<SimpleObject> list = new ArrayList<SimpleObject>();
 list.add(HIGH);
 list.add(MEDIUM);
 list.add(LOW);
 return list;
 }

}

Here is an example to fetch the Priorities via the SimpleObjectAccessor

Collection<SimpleObject> priorities = SimpleObjectAccessor.getInstance()
 .getAll(new SimpleObjectFilter("Priorities"));
for(SimpleObject priority:priorities){
 System.out.println(priority.getName() +" = "+ priority.getValue());
}

Here is the output when the above example is executed.

HIGH = 5
MED = 3
LOW = 1

2.9. Document Interface

It is often required that an application needs to persist an Image/Audio/Video/Word document or a
text document into the database. Fast4J provides the Document interface to handle these kinds
of persistence into the database.

Fast4J Core Features

Document Control

Page 24 of 116 New Mexico ASPEN
Online Fast4J Express

The Document interface extends the Validation interface, therefore any class that implements the
Document interface can be validated as discussed previously. Below is the class diagram that
shows the structural view of a Fast4J Document:

ExpressCore provides two kinds of default Document implementations to persist the Image,
Audio or Video, any serializable object (Map, Collectiion or a User defined serializable object) or a
text. They are BinaryDocument and TextDocument. As the names of these classes indicate,
BinaryDocument objects are used to represent binary data (i.e. .gif, .jpeg, .doc, .avi, .mpeg, .mp3,
.wav) and TextDocument objects are used to represent character data. Typically, these are
stored in a database as BLOB and CLOB data types, respectively (although the specific types for
these objects can be highly database dependent). As Documents tend to be stored independent
of the DomainObject they are associated with due to database implementations, the Document
types are modeled as individual Objects rather than as primitive properties on a DomainObject
implementation.

As an example, we will modify our CustomerDomainObject to have a photo of the customer,
modeled here as a BinaryDocument.

public class Customer extends AbstractDomainObject {

 private static final long serialVersionUID = -6833639663673699732L;

 private String firstName;
 private String lastName;

 //type of BinaryDocument
 private Document photo;

 // Default and non-default Constructors
 public Customer() {
 super();

Fast4J Core Features

Document Control

Page 25 of 116 New Mexico ASPEN
Online Fast4J Express

 }
 public Customer(UUID id) {
 super(id);
 }

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public Document getPhoto() {
 return photo;
 }
 public void setPhoto(Document photo) {
 this.photo = photo;
 }

}

The following code illustrates creation of a BinaryDocument from a GIF image, and the
subsequent addition of the document to the Customer object. The usage pattern here is that a
CustomerService class will create a Customer when it is called by a client supplying the first
name, last name and the file path of the image of the customer.

public class CustomerService {

 public Customer createCustomerWithPhoto(String firstName, String lastName,
 String photoSource){
 Customer customer = null;
 InputStream inStream = getClass().getResourceAsStream(photoSource);
 Document photo = new BinaryDocument(inStream);
 customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setPhoto(photo);
 return customer;
 }

}

 This CustomerService would then be used from a client as follows:

CustomerService customerService = new CustomerService();
Customer customer = customerService.createCustomerWithPhoto("Brian", "Lara",
"/com/deloitte/common/fast4jsamplecode/chapter3/image006.jpg");

Once the Customer object is created, it stores the photo as a BinaryDocument.
ExpressPersistence, the persistence component of the Fast4J framework, has all the tools
necessary to handle BinaryDocument objects and maps them to respective data types (BLOB in
most of the cases) of the data base.

The following is an example where a customer photo is stored in a file.

Fast4J Core Features

Document Control

Page 26 of 116 New Mexico ASPEN
Online Fast4J Express

public class CustomerService {

 public void storeCustomerPhoto(Customer customer) throws CheckedApplicationException{
 // Read the customer photo and save it into a directory
 BufferedInputStream in = null;
 FileOutputStream out = null;
 Document document = customer.getPhoto();
 String photoid = customer.getID().getValue().toString();
 try {
 in = new BufferedInputStream(document.getStream());
 byte[] theData = new byte[in.available()];
 in.read(theData);
 File file = new File(photoid + "_Customer_Copy.jpg");
 out = new FileOutputStream(file);
 out.write(theData);
 }catch (IOException e) {
 throw new CheckedApplicationException(getClass(),
 "Exception occured while reading a customer photo",e);
 }finally {
 try {
 in.close();
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

}

The same usage pattern can be applied to read character data from any source and create them
as a TextDocument. TextDocument provides a couple of simple constructors, one with a String as
a parameter and the other with a Reader. Here is an example of reading a TextDocument from a
file as well as creating it on the fly.

public class CustomerService {

 public Document createTextDocument() throws CheckedApplicationException{
 Document document = null;
 try {
 // Creating Document from a file
 Reader reader = new FileReader(new File("C:/ptdebug.txt"));
 document = new TextDocument(reader);
 // Creating Document at runtime
 StringBuffer xml = new StringBuffer();
 xml.append("<xml>");
 xml.append("<parent>Test Data</parent>");
 xml.append("</xml>");
 document = new TextDocument(xml.toString());
 } catch(IOException ioe) {
 throw new CheckedApplicationException(getClass(),
 "Exception occured while creating a Document",ioe);
 }
 return document;
 }
}

2.10. Command Interface

The Command pattern is an object behavioural pattern that allows us to achieve complete
decoupling between the sender and the receiver of a request. A sender is an object that invokes

Fast4J Core Features

Document Control

Page 27 of 116 New Mexico ASPEN
Online Fast4J Express

an operation, and a receiver is an object that receives the request to execute a certain operation.
The Fast4J framework provides an interface called Command and some concrete
implementations of it to support the command pattern.

In most of the cases it is required to check whether the command class is ready for execution or
not, as it may need some validation. The prepare() method is intended for this purpose. It is
intended to be called first before executing the command, which would return a Collection of
errors/messages which would in turn help the sender to decide whether to continue the execution
of the Command or not. However, it is not mandatory that prepare() should always be called
before execution. A client can directly call the execute () method, which would return a Collection
of errors/messages that indicate whether the Command has executed successfully or not.
Typically, if there are no specific messages to be returned to the sender, these two methods
always return an empty Collection.

Let’s create a command that actually takes a Customer object and stores his photo to disk.

public interface Command {
 public Collection<Error> prepare() throws CheckedApplicationException;
 public Collection<?> execute() throws CheckedApplicationException;
}

public class SaveCustomerPhotoCommand implements Command {

 private Customer customer;

 public SaveCustomerPhotoCommand(Customer customer) {
 super();
 this.customer=customer;
 }

 public Collection<?> execute() throws CheckedApplicationException {
 BinaryDocument photo=(BinaryDocument)customer.getPhoto();
 savePhoto(customer.getFirstName()+"-"+customer.getLastName()+".jpg",photo);
 // private method to save photo to disk
 return Collections.EMPTY_LIST; // or list with a success message
 }

 public Collection<Error> prepare() throws CheckedApplicationException {
 Collection<Error> errors=new ArrayList<Error>();
 if(customer.getPhoto()== null){
 errors.add(new Error("No Photo Associated with this Customer"));
 }
 return errors;
 }

 public void savePhoto(String photoName, BinaryDocument photo) throws
 CheckedApplicationException{
 BufferedInputStream in = null;
 FileOutputStream out = null;
 try {
 in = new BufferedInputStream(photo.getStream());
 byte[] theData = new byte[in.available()];
 in.read(theData);
 File file = new File(photoName);
 out = new FileOutputStream(file);
 out.write(theData);
 }catch (IOException e) {
 throw new CheckedApplicationException(getClass(),
 "Exception occured while reading a customer photo",e);

Fast4J Core Features

Document Control

Page 28 of 116 New Mexico ASPEN
Online Fast4J Express

Here is how the sender invokes this command and propagates the results back to the end layer:

The framework provides concrete Command implementations in its persistence layer. They are
used to create, update and delete the database entries represented by DomainObject instances.
These classes are CreateObjectCommand, UpdateObjectCommand and DeleteObjectCommand
respectively. They accept a DomainObject into their constructor, based on which they are able to
perform a certain operation via their respective DAO. In addition to the create, update, and delete
commands, the framework also provides an implementation SQLCommand that allows ad-hoc
database queries. For more details, please refer to section 3.8.

2.10.1. CommandList

The framework provides a class to collect Commands that are to be executed in a sequence, the
CommandList. Here is how one can collect commands using CommandList:

public class CommandManagerClient {
 public void prepareCommandList(){
 CommandList cmdList = new CommandList();
 cmdList.add(new CreateObjectCommand<Customer>(new Customer()));
 cmdList.add(new UpdateObjectCommand<Customer>(new Customer()));
 cmdList.add(new DeleteObjectCommand<Customer>(new Customer()));
 }

}

 }finally {
 try {
 in.close();
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

}

public class CustomerCommandClient {

 public static void main(String args[]) throws CheckedApplicationException{
 Customer customer = new Customer();
 customer.setFirstName("Puppy");
 customer.setLastName("Pintu");
 customer.setPhoto(new BinaryDocument(
 new CustomerCommandClient().
 getClass().getResourceAsStream

("/com/deloitte/common/fast4jsamplecode/chapter3/image006.jpg")));
 Command cmd = new SaveCustomerPhotoCommand(customer);
 cmd.execute();
 }
}

Fast4J Core Features

Document Control

Page 29 of 116 New Mexico ASPEN
Online Fast4J Express

Once a set of commands are added to a CommandList they can all be executed in sequence
using a CommandManager.

2.10.2. CommandManager

The CommandManager will perform either a single Command or a CommandList of commands.
Assuming an Exception is not thrown, it will continue to execute commands and add their error
results to the Collection to be returned. If execution of the Commands are through the
CommandManager, the prepare() method is ignored and the execute() method will be called
directly, unless the execute() method explicitly calls prepare().

Here is how a CommandManager is used to execute commands:

public class CommandManagerClient {

 public void executeSingleCommand() throws CheckedApplicationException{
 CommandManager cmdManager = new CommandManager();
 //Performing One Command
 UUID id = new OID("12345");
 Customer customer = new Customer(id);
 customer.setFirstName("DC");
 customer.setLastName("F4J");
 customer.setPhoto(new BinaryDocument(
 getClass()
 .getResourceAsStream
 ("/com/deloitte/common/fast4jsamplecode/chapter3/image006.jpg")));
 cmdManager.perform(new CreateObjectCommand<Customer>(customer));
 }

 public void executeMultipleCommands() throws CheckedApplicationException{
 // Performing Multiple Commands
 CommandManager cmdManager = new CommandManager();
 CommandList cmdList = new CommandList();

 UUID id = new OID("12345");
 Customer customer = new Customer(id);
 customer.setFirstName("DC");
 customer.setLastName("F4J");
 customer.setPhoto(new BinaryDocument(
 getClass()
 .getResourceAsStream
 ("/com/deloitte/common/fast4jsamplecode/chapter3/image006.jpg")));
 cmdList.add(new CreateObjectCommand<Customer>(customer));
 // Adding a CreateObjectCommand
 Customer customer1 = new Customer(id);
 customer1.setFirstName("DC1");
 customer1.setLastName("F4J");
 customer1.setPhoto(new BinaryDocument(
 getClass()
 .getResourceAsStream
 ("/com/deloitte/common/fast4jsamplecode/chapter3/image006.jpg")));
 cmdList.add(new UpdateObjectCommand<Customer>(customer1));
 // Adding UpdateObjectCommand
 cmdManager.perform(cmdList);

 }

}

The following UML diagram depicts the structural view of Fast4J Commands.

Fast4J Core Features

Document Control

Page 30 of 116 New Mexico ASPEN
Online Fast4J Express

2.11. Population, Converter, and Mapper Interfaces

Population is the process of copying properties of one object into another. This capability is
frequently needed by software. It can often be utilized in Web Services or other SOA
implementations to convert domain objects into reference model objects or objects created by
web-services generation tools such as WSDL2Java. The population framework is also used
extensively in the Fast4J persistence architecture to marshall query results into DomainObject
instances. Another place where the population capability is commonly exploited is in web
applications. For instance, in the Struts framework, user-entered information is gathered via an
ActionForm. In Struts 1 implementations each input is typically retrieved as a String using
request.getParameter() or ActionForm.getXXX(). This copying of data from the ActionForm into
the application’s objects can be tedious and error-prone. Thus, using the population framework to
marshall data from ActionForms into domain objects provides an alternative approach that will
greatly reduce the total lines of code. Fast4J provides a solution to this problem with the
interfaces of Population, Converter, and Mapper.

public interface Population {
 public boolean accepts(Object toObject,Object fromValue,String propertyName);
 public void populate(Object toObject, Object fromValue, String propertyName)
 throws CheckedApplicationException;
}

The accepts() method determines if the value of a property in one object can be bound to the
property of the other. Once it is known that mapping between properties of both objects is
acceptable, the populate method is invoked to perform the actual copying.

During the process of copying properties, intermediate steps can be accomplished either by
converting the type of property or by mapping the property names. One of these intermediate
steps is defined by the Converter interface.

public interface Converter {
 public boolean accepts(Object from, Class<?> to);

Fast4J Core Features

Document Control

Page 31 of 116 New Mexico ASPEN
Online Fast4J Express

 public Object convert(Object from) throws CheckedApplicationException;
 public Class<?> getReturnType();
 public Class<?>[] getParameterTypes();
}

The Converter interface is used to define valid transformations from one type to another.
Converters can then be used with Population implementations, allowing a property on one object
to be transferred to another even when their data types do not match. Converters can be
registered with implementations of Population to facilitate this.

The Mapper interface can be used to define intermediate steps in property transformation. The
Mapper interface allows properties with dissimilar names to be matched between two objects.

public interface Mapper {
 public String getName(Class<?> klass, String name);
}

Prior to the conversion step, if a target attribute has a different name than the matching attribute
on the source object, a Mapper can be created which can define this property-matching.

The following diagram depicts some of the various scenarios under which population can be
used.

Fast4J Core Features

Document Control

Page 32 of 116 New Mexico ASPEN
Online Fast4J Express

2.11.1. DefaultPropertyPopulator

The DefaultPropertyPopulator object provides a standard implementation utilizing the Population,
Converter, and Mapper interfaces described above. In most scenarios, this implementation is all
that is needed to copy property values from one object to another. The DefaultPropertyPopulator
implements the Population interface, thus allowing data marshalling from one object to another.

In addition to straight population, the DefaultPropertyPopulator allows a Mapper implementation
to be provided to it in its setMapper(Mapper) method. This allows complete flexibility in the pairing
up of properties between the source and target objects. For example, the following Mapper
implementation will tell the Population object using it to match the setBar() method on the source
Object with the getFoo() method on the sender.

public class SamplePropertyMapper extends DefaultPropertyMapper {

 private Map<String, String> theMap;

 public SamplePropertyMapper(){
 super();
 theMap = new HashMap<String, String>();
 theMap.put("foo","bar");
 theMap.put("CUSTMERID", "CUSTID");

 }
 public String getName(Class<?> klass, String propertyName) {
 String theValue = theMap.get(propertyName);
 if (Strings.isEmpty(theValue)) {
 return propertyName;
 }
 return theValue;
 }

}

This example illustrates a custom mapping implementation. However, most use cases will can be
facilitated using the framework-provided FilePropertyMapper or CustomPropertyMapper and will
not need to create their own Mapper implementations. The FilePropertyMapper allows the
mapping information to be read from a configuration file, and the CustomPropertyMapper allows
mappings to be configured through code. For details on use of either of these Mapper
implementations, refer to the Fast4J Javadoc.

DefaultPropertyPopulator also allows Converter implementations to be registered with it.
DefaultPropertyPopulator by default contains implementations of most Converters that are
necessary in typical applications. These Converters support transformations between properties
that are usually compatible either by their format or by a specific contract. For example, any
numeric primitive or wrapper can be converted to a String and vice-versa if a particular String can
be parsed to a particular numeric data type. The default set of Converters that are registered with
the DefaultPropertyPopulator allow the conversion between the following types of properties:

Converts from: To:

String

Byte, Short, Integer, Float, Long, Double, Character,
Boolean, BigDecimal, BigInteger, byte, short, int, float, long,

double, char, boolean, char[], Character[], OID, java.util.Date,
java.util.Calendar

Fast4J Core Features

Document Control

Page 33 of 116 New Mexico ASPEN
Online Fast4J Express

SocialSecurityNumber, CreditCard, TextDocument

Boolean boolean

Character Char

Character[] Char[]

Calendar java.util.Date, java.sql.Date, java.sql.Timestamp

Long / long java.util.Date, java.sql.Date, java.sql.Timestamp

java.util.Date java.sql.Date, java.sql.Timestamp

java.sql.Date java.util.Date, java.sql.Timestamp

java.sql.Timestamp java.util.Date, java.sql.Date

Number and its
Subclasses

Numeric Primitives

All of the aforementioned conversions are symmetric, meaning the reverse conversions are also
provided (i.e. from String to Numeric Types, Date to Calendar, etc.).

If DefaulPropertyPopulator does not contain a particular conversion that is nessessary, additional
Converters can be registered through the addConverter() method or in its constructor. Here is
how one can add a new Converter implementation to the default list of Converters used by
DefaultPropertyPopulator.

DefaultPropertyPopulator populator=new DefaultPropertyPopulator();
populator.addConverter(new MyXXXToYYYConverter());

The following example illustrates a scenario where the population framework is quite useful. Here
we have a simple Struts 1 ActionForm. We will populate the DOB property of a Customer
DomainObject from the values received from the ActionForm.

Here is the ActionForm that holds the date of birth field as a String.

public class CustomerForm extends ActionForm {

 private static final long serialVersionUID = 2720322855489595560L;

 private String money; // input parameter from web form as String
 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getMoney() {

Fast4J Core Features

Document Control

Page 34 of 116 New Mexico ASPEN
Online Fast4J Express

 return money;
 }
 public void setMoney(String money) {
 this.money = money;
 }

}

Here is the Customer domain object that has the Money field as
com.deloitte.common.objects.business.Money:

public class Customer extends AbstractDomainObject {

 private static final long serialVersionUID = -6301046249065135938L;

 private String firstName;
 private String lastName;

 private Money money;

 public Money getMoney() {
 return money;
 }
 public void setMoney(Money money) {
 this.money = money;
 }
 // Default and non-default Constructors
 public Customer() {
 super();
 }
 public Customer(UUID id) {
 super(id);
 }

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

}

In most cases the available set of converters provided by framework are sufficient. However it is
very easy to define a new converter if necessary.
Below is an example of converter which converts from java.lang.String to
com.deloitte.common.objects.business.Money object.

Fast4J Core Features

Document Control

Page 35 of 116 New Mexico ASPEN
Online Fast4J Express

public class StringMoneyConverter extends AbstractConverter {

 public Object convert(Object from) throws CheckedApplicationException {
 // Verify the from and return type
 // if not suitable then throw the exception
 checkAndThrowException(from);
 return new Money((String)from, Currency.getInstance(Locale.getDefault()));
 }

 public Class<?> getReturnType() {
 // TODO Auto-generated method stub
 return Money.class;
 }

 public Class<?>[] getParameterTypes() {
 Class<?>[] c = { String.class } ;
 return c;
 }

}

Now that we have our Converter ready, the code below demonstrates how to populate the
“money” property of a Customer DomainObject from the CustomerForm using the
DefaultPropertyPopulator in the CustomerAction.

public class CustomerAction extends DispatchAction {
 public ActionForward execute1(ActionMapping mapping,ActionForm form,
 HttpServletRequest request,HttpServletResponse response) throws Exception {

 DefaultPropertyPopulator populator=new DefaultPropertyPopulator();
 populator.addConverter(new StringMoneyConverter()); // Register our Converter

 Customer customer=new Customer();

 // This will populate only the
 // Money property to Customer object
 // from the CustomerForm
 populator.populate(customer,((CustomerForm)form).getMoney(),"money");

 return mapping.findForward("success");
 }

}

Now that we have seen how to populate a single property of an object using
DefaultPropertyPopulator and the associated Population, Converter, and Mapper interfaces, we
will see how we can populate more than one property of an object at a time.

2.11.2. ObjectPopulator

Fast4J provides a class called ObjectPopulator that populates properties from one Object (or
Map) to another Object. To do so, it must be provided a Population object (commonly the
DefaultPropertyPopulator). It will then run through all the properties mapped between the two
objects, performing the Population operations on each.

Fast4J Core Features

Document Control

Page 36 of 116 New Mexico ASPEN
Online Fast4J Express

To demonstrate how to use ObjectPopulator we will use the same Action/ActionForm example.

public class CustomerAction extends DispatchAction {

 public ActionForward execute1(ActionMapping mapping,ActionForm form,
 HttpServletRequest request,HttpServletResponse response) throws Exception {

 DefaultPropertyPopulator populator=new DefaultPropertyPopulator();
 populator.addConverter(new StringMoneyConverter()); // Register our Converter

 Customer customer=new Customer();

 // The below will populate the whole Customer Object from the CustomerForm
 ObjectPopulator objectPopulator = new
 ObjectPopulator(((CustomerForm)form),customer,populator);
 objectPopulator.execute();

 return mapping.findForward("success");
 }

}

We can also specify a List of property names that should be excluded by ObjectPopulator while
populating the target object. This is done via constructor. Here is how we can tell the
ObjectPopulator to exclude population of the property “dob” from the CustomerForm to Customer
DomainObject.

public class CustomerAction extends DispatchAction {

 public ActionForward execute2(ActionMapping mapping,ActionForm form,
 HttpServletRequest request,HttpServletResponse response) throws Exception {

 DefaultPropertyPopulator populator=new DefaultPropertyPopulator();
 populator.addConverter(new StringMoneyConverter()); // Register our Converter

 Customer customer=new Customer();

 // The below will not populate the properties which are in exclusion list
 // to Customer Object from the CustomerForm
 List<String> exclusionList=new ArrayList<String>();
 exclusionList.add("money");

 ObjectPopulator objectPopulator1 = new
 ObjectPopulator(((CustomerForm)form),customer,populator,exclusionList);
 objectPopulator1.execute();

 return mapping.findForward("success");
 }

}

As mentioned earlier, ObjectPopulator can also populate properties of an object to and from a
java.util.Map. However, there is no difference to how this is accomplished in code, aside from the
different source and destination objects passed to the ObjectPopulator:

Fast4J Core Features

Document Control

Page 37 of 116 New Mexico ASPEN
Online Fast4J Express

public class PopulatorClient {

 public void populateFromMap() throws CheckedApplicationException{
 Map<String, String> map = new HashMap<String, String>();
 map.put("firstName","Karthik");
 map.put("lastName","Banda");
 map.put("money","102");

 DefaultPropertyPopulator populator=new DefaultPropertyPopulator();
 populator.addConverter(new StringMoneyConverter());

 Customer customer=new Customer();
 ObjectPopulator objectPopulator=new ObjectPopulator(map,customer,populator);
 objectPopulator.execute();

 System.out.println("<First Name>"+customer.getFirstName());
 System.out.println("<Last Name>"+customer.getLastName());
 System.out.println("<Money>"+customer.getMoney());
 }
}

Output from execution:

<First Name>Karthik
<Last Name>Banda
<Date of birth>$102.00

While the population capabilities are quite often used in the presentation layer of applications,
there are many other potential uses for the marshalling capabilities. In fact, the population
capabilities are used extensively in the Fast4J persistence layer while performing object/relational
mapping. Another common use is for mapping of data into objects or beans passed to Web
services or other APIs external to the application.

Contract No. PSC 12-630-4000-0001

3 Fast4J Persistence Features

Fast4J Express provides a persistence layer that abstracts out most of the complexities involved
in Java database programming using JDBC, letting the developer focus on the business
programming. All related classes of the persistence functionality are packaged in
ExpressPersistence.jar. ExpressPersistence.jar is dependent only upon ExpressCore.jar, so
these two libraries are all that is required for implementing the Fast4J persistence architecture.

3.1 DataAccessObject Interface

The DataAccessObject interface is the primary entry point into the Fast4J persistence layer. This
defines the set of data operations that can act upon a Fast4J DomainObject.

The Fast4J persistence architecture is designed around the persistence of DomainObjects which
form the business model for your Fast4J application. Use of many features of Fast4J persistence
also requires familiarity with many other features of Fast4J Core, such as the Population tools,
Commands, Loaders, and Filters.

3.2 A word about database sequences

It is common in many application architectures to utilize database sequences as the generated
unique identifiers for one’s domain model. However, this approach ties the identity of an object
with its storage in the database. This is not a good practice because an object may be required to
be identified within the system (Eg: In a Message Queue or in a hash-backed collection type)
irrespective of whether it has already been persisted. As a result, the recommended practice in
Fast4J applications is to not utilize database sequence values that are auto-generated during
inserts for associating keys with an Object. Instead, Fast4J DomainObject instances are identified
by their UUID implementation, which allows generation of a unique key independent of
persistence operations being executed (as is done if the default OID implementation of OID is
used).

3.3 Using the Fast4J Persistence Layer

Fast4J Persistence uses the Data Access Object pattern. The DAO pattern provides an
abstraction layer between the business and data tiers. In other words, business services access
data via DAO’s. This abstraction layer encapsulates the persistent storage type, vendor
implementation, etc. As a result, changes in the data layer should be transparent to the business
services.

Typically these are the activities and features that are part of Fast4J Persistence

public interface DataAccessObject<T extends DomainObject> {
 public Collection<T> getAll(Map<?, ?> parameters) throws CheckedApplicationException;
 public Collection<T> getAll(Map<?, ?> parameters,Filter theFilter) throws
 CheckedApplicationException;
 public T get(Map<?, ?> parameters) throws CheckedApplicationException;
 public T findByKey(Object key, Object value) throws CheckedApplicationException;
 public void update(T theObject) throws CheckedApplicationException;
 public void add(T theObject) throws CheckedApplicationException;
 public void remove(T theObject) throws CheckedApplicationException;

}

Fast4J Persistence Features

Document Control

Page 39 of 116 New Mexico ASPEN
Online Fast4J Express

▪ Creating Connection Factories i.e. defining DataSource

▪ Creating DAOs

▪ Registering and Locating DAOs,

▪ Performing CRUD operations on DAOs

▪ Handling Results

▪ O-R Mapping (i.e. mapping results into DomainObjects)

▪ Instancing Strategies for DAOs

▪ Persistence Commands to support SOA.

▪ Transaction Services of Fast4J using PersistenceCommandManager

3.3.1 AbstractDAO

The framework includes the class AbstractDAO to provide the bulk of the behavior necessary to
implement persistence. Typically, all DAOs built with Fast4J persistence extend AbstractDAO.
AbstractDAO handles most of the complex tasks such as binding and unbinding arguments and
parameters from an Object map to SQL queries in a DAO, as well as the actual invocation of the
JDBC API.

In order to have a fully-functioning set of persistence operations, the subclass of AbstractDAO is
only required to implement the getXXXStatement(), getXXXParameters(), and
getResultSetProcessor() methods. The former two methods return the SQL statement and
necessary parameters for the various CRUD operations. The getResultSetProcessor() method
provides the O-R mapping capability, moving data from its record-based format into a
DomainObject.

Let’s see an example of creating a DAO. As discussed, the Fast4J persistence layer is driven by
the DomainObject. We will create a simple Customer DomainObject and see how this object is
represented in the database and discuss how to code our CustomerDAO.

Here is how the Customer table is created in the database:

The above table is represented as a DomainObject with the code below (One can automatically
generate the DomainObject and its respective DAO from an existing database table using the
Fast4J Eclipse plug-in. For details, refer to Chapter 6.)

CREATE TABLE CUSTOMER
(

CUSTID NUMERIC(30) PRIMARY KEY,
NAME VARCHAR(30),
DOB DATE,
EMAIL VARCHAR(50)

);

Fast4J Persistence Features

Document Control

Page 40 of 116 New Mexico ASPEN
Online Fast4J Express

Note that the primary key CUSTID is not represented as a field in the object. This is because the
domain object primary key is represented by the UUID property inherited from
AbstractDomainObject.

Now that we have the Customer DomainObject, we have to create a DAO that handles the
persistence operations for it. We create a CustomerDAO as below:

public class Customer extends AbstractDomainObject {

 private static final long serialVersionUID = 1L;

 private String name;
 private Date dob;
 private String email;

 public Customer() {
 super();
 }

 public Customer(UUID custID) {
 super(custID);
 }

 public String getName() {
 return this.name;
 }

 public Date getDob() {
 return this.dob;
 }

 public String getEmail() {
 return email;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setDob(Date dob) {
 this.dob = dob;
 }

 public void setEmail(String email) {
 this.email = email;
 }

}

public class CustomerDAO extends AbstractDAO<Customer> {

 // Methods to handle the Creation of Customer DomainObject

 protected String getInsertStatement(Customer theObject) {
 StringBuffer sql = new StringBuffer();
 sql.append("insert into CUSTOMER (");
 sql.append("NAME,");
 sql.append("DOB,EMAIL,");
 sql.append("CUSTID");
 sql.append(") values (");
 sql.append("?,");

Fast4J Persistence Features

Document Control

Page 41 of 116 New Mexico ASPEN
Online Fast4J Express

 sql.append("?,?,");
 sql.append("?");
 sql.append(")");
 return sql.toString();

 }

 protected List<Object> getInsertParameters(Customer theObject) {
 List<Object> params = new ArrayList<Object>();
 params.add(theObject.getName());
 params.add(new java.sql.Timestamp(theObject.getDob().getTime()));
 params.add(theObject.getEmail());
 params.add(theObject.getID().getValue());
 return params;

 }

 // Methods to handle the Read operation

 protected String getSelectStatement(Map<?, ?> params) {
 StringBuffer sql = new StringBuffer();
 sql.append("select ");
 sql.append("NAME AS NAME,");
 sql.append("DOB AS DOB,EMAIL AS EMAIL,");
 sql.append("CUSTID AS ID");
 sql.append(" from CUSTOMER where 1=1 ");
 if (params.containsKey("CUSTID")) {
 sql.append(" and CUSTID = ?");
 }
 if (params.containsKey("NAME")) {
 sql.append(" and NAME = ?");
 }
 return sql.toString();

 }

 protected List<Object> getSelectParameters(Map<?,?> params) {

 List<Object> retParams = new ArrayList<Object>();
 if (params.containsKey("CUSTID")) {
 retParams.add(((UUID) params.get("CUSTID")).getValue());
 }
 if (params.containsKey("NAME")) {
 retParams.add(params.get("NAME"));
 }
 return retParams;

 }

 // Methods to handle the Delete operation

 protected String getDeleteStatement(Customer customer) {

 StringBuffer sql = new StringBuffer();
 sql.append("delete from CUSTOMER where 1=1");
 sql.append(" and CUSTID = ?");
 return sql.toString();

 }

 protected List<Object> getDeleteParameters(Customer customer) {

Fast4J Persistence Features

Document Control

Page 42 of 116 New Mexico ASPEN
Online Fast4J Express

The above CustomerDAO provides the implementations to perform all the CRUD operations on a
Customer DomainObject. While implementing any of the operations, the simple rule that should
be followed is that getXXXParameters() should return a List of parameters in the same order as
they are represented in the Statement in getXXXStatement().

The read operations in this DAO are of two types. If someone is trying to retrieve a single
DomainObject using any set of paremeters then the get() method should be used. Else if multiple
DomainObjects are to be retrieved, then the getAll() method should be used. The get() method
will throw a CheckedPersistenceException if multiple records are returned from the query.

A critical portion of all DAOs is the implementation of the ResultSetProcessor interface returned
by getResultSetProcessor(). This will be discussed in more detail later, but for now simply note
that it is the ResultSetProcessor that is used to transform the data in the ResultSet returned from
the database into a list of Java Objects.

 List<Object> params = new ArrayList<Object>();
 params.add(((Customer) customer).getID().getValue());
 return params;

 }

 // Methods to handle the Update operation

 protected String getUpdateStatement(Customer customer) {
 StringBuffer sql = new StringBuffer();
 sql.append("update CUSTOMER set ");
 sql.append("NAME = ?, ");
 sql.append("DOB = ?, EMAIL=? ");
 sql.append(" where 1=1 ");
 sql.append(" and CUSTID = ?");
 return sql.toString();
 }

 protected List<Object> getUpdateParameters(Customer customer) {

 List<Object> params = new ArrayList<Object>();
 params.add(customer.getName());
 params.add(new java.sql.Timestamp(customer.getDob().getTime()));
 params.add(customer.getEmail());
 params.add(customer.getID().getValue());
 return params;

 }

 // Method implementing the O-R mapping using an Anonymous inner class.

 protected ResultSetProcessor<Customer> getResultSetProcessor() {
 return new DomainObjectResultSetProcessor<Customer>(new
 DomainObjectProcessor<Customer>() {
 public Customer map(Map<String, ?> map) throws
 CheckedApplicationException {
 Customer theObject = new Customer();
 ObjectPopulator thePopulator = new ObjectPopulator(map,
 theObject, new DefaultPropertyPopulator(), null);
 thePopulator.execute();
 return theObject;
 }
 });
 }
}

Fast4J Persistence Features

Document Control

Page 43 of 116 New Mexico ASPEN
Online Fast4J Express

3.3.2. Defining DataSources

The Fast4J framework uses a ConnectionFactory object to acquire JDBC DataSources. A
subclass of this object must be defined to return the DataSource for your database and driver.
The following example illustrates this. Once the DataSource is created, it should be registered
with the ConnectionFactory with a key so that it can be retrieved at any point of time from the
ConnectionFactory. It is recommended that the class of the ConnectionFactory subclass itself act
as the key, as this is usually the most convenient lookup value. At the same time, the developer is
also given the flexibility to use their own keys like a String, but an extra effort to propagate the key
wherever necessary would also have to be made.

Another commonly used pattern to define ConnectionFactory objects is to locate the DataSource
via JNDI and register with the ConnectionFactory.

Of course, the DataSource to be looked up via JNDI should be registered with the underlying
appserver prior to retreival.

public class PostgresSQLConnectionFactory extends ConnectionFactory {

 static {
 try {
 PGSimpleDataSource ds = new org.postgresql.ds.PGSimpleDataSource();
 ds.setServerName("localhost");
 ds.setPortNumber(5432);

 ds.setDatabaseName("postgres");
 ds.setUser("postgres");
 ds.setPassword("postgre");
 setDataSource(PostgresSQLConnectionFactory.class, ds);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

public class JNDIBasedConnectionFactory extends ConnectionFactory {

 static {
 try {
 Context context = new InitialContext();
 DataSource pooledDataSource = (DataSource) context
 .lookup("java:comp/env/jdbc/hsqldbdatasource");
 setDataSource(JNDIBasedConnectionFactory.class, pooledDataSource);

 } catch (NamingException e) {

 Logger.getLogger(JNDIBasedConnectionFactory.class.getName()).info("Exception while looking
up the datasource>");
 }
 }

}

Fast4J Persistence Features

Document Control

Page 44 of 116 New Mexico ASPEN
Online Fast4J Express

3.3.3 DAO Registration

Once the DataSource is defined and registered with the ConnectionFactory, it needs to be
associated with the DAO. This is done while registering the DAO with the DefaultDAOFactory.
When the DefaultDAOFactory is later used to retrive the DAO, it will automatically be associated
with the provided ConnectionFactory. It is recommended practice to use the class of the domain
object as the key for registering and looking up the DAO with DefaultDAOFactory.

Here is an example of how a DAO is associated with a DataSource using DefaultDAOFactory:

Once registered, the DAO may then be retieved using the key, in this case the customer class:

There are situations where the same DAO must be registered multiple times (possibly with
different ConnectionFactories), in this case the registerByArtificialKey method should be used
to register a DAO with any arbitary key. This allows any custom-defined key value to be used for
the object (most commonly a constant String value):

There are several best practices with respect to the structure of DAOs and the registration
process. First, it is recommended to provide a default no-arg constructor for a DAO in which there
are no references to any other DAOs. It is also recommended that this registration should occur
at the application startup, such as through a startup Servlet.

3.3.4 Memory-Sensitive Caching

Fast4J provides a mechanism to cache the DomainObjects that are created by querying the
database. To use this feature, the DAO objects that require caching capability should be wrapped
into a CachedDAO while registering through the DefaultDAOFactory.

The following code snippet demonstrates the usage of a CachedDAO to cache the Customer
DomainObjects through the application. As can be seen, the CachedDAO object is a decorator
for the underlying DAO:

The caching capability is memory-sensitive. It is implemented in such a way that the JVM may
garbage-collect the cache objects when it starts to run low on memory. Due to this, you are
assured to not create scalability issues by introducing caching into the framework.

// Registering a DAO
DefaultDAOFactory.getInstance().register(Customer.class, new
 PostgresSQLConnectionFactory(), new CustomerDAO());

DataAccessObject<Customer> dao = DefaultDAOFactory.getInstance().createFor(Customer.class);

// Registering same DAO with any KEY other than DomainObject.

DefaultDAOFactory.getInstance().registerByArtificialKey("CustomerDao",new
SimpleConnectionFactory(),new CustomerDAO());

// Registering a DAO for Memory-Sensitive Caching

DefaultDAOFactory.getInstance().register(Customer.class,new SimpleConnectionFactory(),new
CachedDAO<Customer>(new CustomerDAO()));

Fast4J Persistence Features

Document Control

Page 45 of 116 New Mexico ASPEN
Online Fast4J Express

If a DAO is wrapped by a CachedDAO, ALL access to the database should be through the
cached implementation unless all access is Read-Only. Note that this restricts the use of
CachedDAO to single-JVM environments, excluding clustered applications.

Fast4J framework provides implementations to two of the most common caching strategies, both
a first-in-first-out (FIFO) and least-recently-used (LRU) algorithm. By default CachedDAO uses
the FIFO algorithm. One can provide an alternate caching strategy by passing another
implementation of com.deloitte.common.interfaces.Cache to CachedDAO. The below code shows
the usage of LruCache strategy.

There other caching stratergies like LFU (Least Frequently Used), 2Q - (Two Queues) and LRU2.
One also has the ability to implement caches with refresh timelines or with exposed hooks for
manipulating the cache programmatically. Any algorithms implementing the Cache interface can
potentially be used.

3.3.5 File-Based Configuration

Instead of registering all DAOs with the DefaultDAOFactory programmatically, a file-based
configuration option for Fast4J Persistence provided. This is based on the Loader interface found
in the package com.deloitte.common.interfaces. This can be done with either properties or XML
files. As a general rule, the Loaders should be executed on JVM startup. This could be done via
an init servlet or a static initializer. The following code is an exmaple of code in an init servlet or
static initialzer for this purpose:

try {
 new XMLPersistenceLoader(
 "/com/deloitte/common/fast4jsamplecode/chapter4/FileName.xml").loadValues();
} catch (CheckedApplicationException e) {
 e.printStackTrace();
}

3.3.5.1 XML Configuration

When it is convenient or required that this configuration occur external to the system and in an
XML file, a XMLPersistenceLoader class can be invoked. This XMLPersistenceLoader class uses
an external XML file to define the configuration data it initializes.

Example DAO XML Configuration File:
<configuration>
 <registration>
 <dao key="com.deloitte.common.fast4jsamplecode.chapter4.Customer"
 factory="com.deloitte.reference.persistence. PostgresSQLConnectionFactory"
 dao="com.deloitte.common.fast4jsamplecode.chapter4.CustomerDAO"
 cached="false"/>
 </registration>
</configuration>

Cache<UUID, Customer> theCache = new LruCache<UUID, Customer>();
CachedDAO<Customer> dao = new CachedDAO<Customer>(new CustomerDAO() ,theCache);
DefaultDAOFactory.getInstance().register(Customer.class,new PostgresSQLConnectionFactory(),dao);

Fast4J Persistence Features

Document Control

Page 46 of 116 New Mexico ASPEN
Online Fast4J Express

The ”dao” element in the XML document would associate the following three items:

Key – The key used to look up DataAccessObject, usually the Class of the DomainObject
Factory – Connection factory responsible for supplying the Datasource
DAO – DataAccessObject implementation to handle the DomainObject

The following optional attribute is also available

Cached – Wrap the DAO in a CachedDAO to allow for data caching

The XMLPersistenceLoader and it’s configuration file registers the CustomerDAO with the
DefaultDAOFactory. This should be invoked at system startup, for instance via an init servlet.

3.3.5.2 Properties File Configuration

With the PropertiesPersistenceLoader the configuration information is specified in a java
properties file. It is provided as an alternative to the XMLPersistenceLoader. The properties file
syntax is similar to the XML schema, but is not quite descriptive. In the properties syntax, all
values are delimited by a comma ‘,’. The first three elements of the DAO property are required,
the last one is optional. If one wants the default value for either of the optional parameters, simply
leave it blank as illustrated for dao3 in the example below.

Note the keys must begin with the literal strings ‘dao’ anything after that but before the ‘=’ is
ignored. The following is an example of the properties configuration file:

Note the keywords must begin with the proper syntax (dao, loader)
dao1= com.deloitte.common.fast4jsamplecode.chapter4.Customer,
 com.deloitte.reference.persistence.SimpleConnectionFactory,
 com.deloitte.common.fast4jsamplecode.chapter4.CustomerDAO,true
#This will not load
stdao2=com.deloitte.common.objects.domain.XMLContainer,
com.deloitte.common.fast4jsamplecode.MockConnectionFactory,
com.deloitte.common.fast4jsamplecode.DomainObjectXMLDAO,
false
dao3=com.deloitte.common.objects.domain.MockDomainObject,
com.deloitte.common.fast4jsamplecode.MockConnectionFactory,
com.deloitte.common.fast4jsamplecode.MockDAO,
dao4=java.lang.Object,
com.deloitte.common.fast4jsamplecode.MockConnectionFactory,
com.deloitte.common.fast4jsamplecode.MockDAO

The PropertiesPersistenceLoader must be invoked during system initialization as follows:

As with the XMLPersistenceLoader, the PropertiesPeristenceLoader registers all the DAOs with
DefaultDAOFactory. Once all the Loader is executed at JVM startup, we can use the
DefaultDAOFactory as normal to get handle on any DAO by using the corresponding
DomainObject.

new XMLPersistenceLoader(
 "/com/deloitte/common/fast4jsamplecode/chapter4/FileName.xml").loadValues();

new PropertiesPersistenceLoader(
 "/com/deloitte/common/fast4jsamplecode/chapter4/FileName.properties").loadValues();

DataAccessObject<Customer> dao = DefaultDAOFactory.getInstance().createFor(Customer.class);

Fast4J Persistence Features

Document Control

Page 47 of 116 New Mexico ASPEN
Online Fast4J Express

3.4. Basic O/R Mapping

Storing and retrieving information for most applications usually involves some form of interaction
with a relational database. This has presented a fundamental problem for developers for quite
some time since the design of relational data and object-oriented instances share very different
relationship structures within their respective environments. Relational databases are structured
in a tabular configuration and object-oriented instances are typically structured in a hierarchical
manner. This "impedance mismatch" has led to the development of several different object-
persistence technologies attempting to bridge the gap between the relational world and the
object-oriented world.

3.3.1 ResultSetProcessor

The framework provides an interface called ResultSetProcessor that specifies a contract for
which the implementing class should provide the details of how to process the ResultSet retrieved
by querying the database, converting the ResultSet into a list of objects. It is the
ResultSetProcessor that performs the O/R mapping and actually converts the returned records
into Java objects.

package com.deloitte.common.persistence.interfaces;

public interface ResultSetProcessor<T> {
 public List<T> handleResultSet(ResultSet rs, Filter<T> f)
 throws CheckedApplicationException;
}

The framework also includes an abstract and a couple of concrete implementation classes for the
ResultSetProcessor interface known as AbstractResultSetProcessor, BasicResultSetProcessor
and DomainObjectResultSetProcessor. In most cases the implementation classes provided by
the framework should be sufficient, but in the case where a DomainObject has to be mapped as a
dependent graph (aggregate) one should create their own custom ResultSetProcessor. Creating
custom ResultSetProcessor objects is discussed in the Advanced O-R Mapping section 3.6 of
this chapter.

It should be noted that the handleResultSet() method is passed a Filter as an argument. This
could be used by the implementing class to exclude any objects from the results collection. This
Filter is provided via the getAll() method on the DAO.

3.4.1.1. BasicResultSet Processor

The BasicResultSetProcessor class handles the ResultSet by converting it into a List of Map
objects, each representing a row in a table. Each map has the database column name as the key
and the respective object returned by ResultSetManager after being handled by the registered
ResultSetHandlers as the value.

3.4.1.2. DomainObjectResultSetProcessor

The DomainObjectResultSetProcessor class provided by the framework extends
AbstractResultSetProcessor. It provides an implementation to handle the ResultSet and return a
List of DomainObjects depending on the DomainObjectProcessor implementation injected in its
constructor.

Fast4J Persistence Features

Document Control

Page 48 of 116 New Mexico ASPEN
Online Fast4J Express

The DomainObjectProcessor converts a single result row in to a DomainObject. It takes a Map
with the column name as the key and the query column result for the value as input and returns a
custom DomainObject.

public interface DomainObjectProcessor<T extends DomainObject> {

 public T map(Map<String, ?> theRow) throws CheckedApplicationException;

}

This allows different DomainObjectProcessors to be given to instances of
DomainObjectResultSetProcessor, allowing the conversion of the ResultSet into different types of
DomainObjects. To demonstrate this we go back to the CustomerDAO example already
discussed and see how this is used with an anonymous inner class implementation of the
DomainObjectProcessor.

protected ResultSetProcessor<Customer> getResultSetProcessor() {
 return new DomainObjectResultSetProcessor<Customer>(new
 DomainObjectProcessor<Customer>() {
 public Customer map(Map<String, ?> map) throws
 CheckedApplicationException {
 Customer theObject = new Customer();
 ObjectPopulator thePopulator = new ObjectPopulator(map,
 theObject, new DefaultPropertyPopulator(), null);
 thePopulator.execute();
 return theObject;
 }
 });
 }

As you can see, the anonymous inner class implementing DomainObjectProcessor is defined as
the argument to the DomainObjectResultSetProcessor constructor. Note that the map method
implemented here uses the population mechanism of the framework, discussed in Section 2.11.

There are several other usage patterns for defining and injecting the DomainObjectProcessor. In
the following example, the DomainObjectProcessor is implemented as a static inner class within
the CustomerDAO and passed into the DomainObjectResultSetProcessor.

public class CustomerDAO extends AbstractDAO<Customer> {

 // Method implementing the O-R mapping using an inner class.

 static class CustomerProcessor implements DomainObjectProcessor<Customer> {
 public Customer map(Map<String, ?> map)
 throws CheckedApplicationException {
 Customer theObject = new Customer();
 ObjectPopulator thePopulator = new ObjectPopulator(map, theObject,
 new DefaultPropertyPopulator(), null);
 thePopulator.execute();
 return theObject;
 }
 }

 protected ResultSetProcessor<Customer> getResultSetProcessor() {
 return new DomainObjectResultSetProcessor<Customer>(
 new CustomerProcessor());

 }

Fast4J Persistence Features

Document Control

Page 49 of 116 New Mexico ASPEN
Online Fast4J Express

// -- other methods in CustomerDAO
}

Similarly, one can always create an external class that implements DomainObjectProcessor and
pass it into DomainObjectResultSetProcessor.

Another simple way to implement DomainObjectProcessor is to have the DAO itself implement
the interface. The map method implemented in this example shows how one can manually map
the Customer object without using population framework.

public class CustomerDAO extends AbstractDAO<Customer> implements
DomainObjectProcessor<Customer> {
 // DAO itself implement the DomainObjectProcessor interface

 public Customer map(Map<String, ?> map) throws CheckedApplicationException {
 // We know the map returned here contains the column names as keys
 // and the respective content as values.
 //Manually map the content
 Customer theObject = new Customer();
 theObject.setID(new OID(((BigInteger) map.get("ID")).longValue()));
 theObject.setName((String) map.get("NAME"));
 theObject.setDob((Date) map.get("DOB"));
 theObject.setEmail((String) map.get("EMAIL"));
 return theObject;
 }

 protected ResultSetProcessor<Customer> getResultSetProcessor() {
 return new DomainObjectResultSetProcessor<Customer>(this);
 }
}

To reiterate what we have discussed in object population in Chapter 2.11, if both the column
names in the database and the fields in the domain object are same, then
DefaultPropertyPopulator can be used to transfer the property values without a Mapper
implementation. In this case, the use of DefaultPropertyPopulator without a Mapper will work to
populate the Customer DomainObject because even though the Customer table has the primary
key defined as CUSTID, it is read in the query as ID (refer to getSelectStatement()
implementation of CustomerDAO), and it is represented by field ID in the Customer domain
object. Also one should make sure that all the required Converters are registered with the
DefaultPropertyPopulator or any other custom Populator implementation before using it with the
ObjectPopulator.

3.4.1.3. XMLResultSetProcessor

The XMLResultSetProcessor class is used to represent the ResultSet data in XML format.
XMLResultSetProcessor handles the ResultSet and it returns a List containing a single
XMLContainer object which holds the XML content that represents each row in a table with the
column name as the tag and the String value of the column value object (returned from toString())
as the content for the tag. Here is the overridden method in a DAO implementation (that extends
AbstractDAO:

Fast4J Persistence Features

Document Control

Page 50 of 116 New Mexico ASPEN
Online Fast4J Express

protected ResultSetProcessor<Customer> getResultSetProcessor() {
 ResultSetProcessor processor = new XMLResultSetProcessor();
 return processor;
}

To demonstrate the functionality of XMLResultSetProcessor, let us see how this is used to read
the existing data from the database.

Example Customer data

ID Name BirthDate Email

11504573506220001 David 1979-08-29 abcdasisk@deloitte.com

115045735272500001 Karthik 1983-08-29 abdckarthik@deloite.com

The following code will invoke the CustomerDAO using the XMLResultSetProcessor and print the
results.

 // ---- Any client class
DataAccessObject<Customer> customerDAO =
DefaultDAOFactory.getInstance().createFor(Customer.class);
Collection customers = customerDAO.getAll(new HashMap());
XMLContainer container = (XMLContainer) ((List) customers).get(0);
System.out.println(container.getXml());
// ----- other code in the client class

Fast4J Persistence Features

Document Control

Page 51 of 116 New Mexico ASPEN
Online Fast4J Express

Output from execution

<ResultSet>
 <Row>
 <NAME>David</NAME>
 <DOB>1979-08-29</DOB>

<EMAIL>abcdasisk@deloitte.com</EMAIL>
 <ID>11504573506220001</ID>
 </Row>
 <Row>
 <NAME>Karthik</NAME>
 <DOB>1983-08-29</DOB>

<EMAIL>abcdkarthik@deloitte.com</EMAIL>
 <ID>11504573527250001</ID>
 </Row>
</ResultSet>

The application developer can also change the labels of the tags <ResultSet> and <Row> by
passing different tag names for them in the constructor of XMLResultSetProcessor.

protected ResultSetProcessor<Customer> getResultSetProcessor() {
 ResultSetProcessor processor = new XMLResultSetProcessor("Customers","Customer");
 return processor;
}

With this change running the client code above returns the following output:

<Customers>
 <Customer>
 <NAME>David</NAME>
 <DOB>1979-08-29</DOB>

<EMAIL>abcdasisk@deloitte.com</EMAIL>
 <ID>11504573506220001</ID>
 </ Customer >
 < Customer >
 <NAME>Karthik</NAME>
 <DOB>1983-08-29</DOB>

<EMAIL>abcdkarthik@deloitte.com</EMAIL>
 <ID>11504573527250001</ID>
 </ Customer >
</ Customers>

Fast4J removes the need to override the getResultSetProcessor() method in your DAO by
providing the AbstractXMLDAO class. AbstractXMLDAO is a subclass implementation of
AbstractDAO with a default implementation of the getResultSetProcessor() method that returns
an XMLResultSetProcessor.

public abstract class AbstractXMLDAO extends AbstractDAO<XMLContainer> {
 protected ResultSetProcessor<XMLContainer> getResultSetProcessor() {
 return new XMLResultSetProcessor();
 }
}

If moving your resulting data into XML is necessary, you can then simply have your
DataAccessObject subclass extend AbstractXMLDAO. In this case, you will not need to override
getResultSetProcessor().

Fast4J Persistence Features

Document Control

Page 52 of 116 New Mexico ASPEN
Online Fast4J Express

3.4.1.4. SimpleObjectResultSetProcessor

As discussed in Chapter2.8, SimpleObjects are not DomainObjects, and are typically used to
represent the name/value pairs. The SimpleObjectResultSetProcessor class converts the rows of
data in a particular table to the framework-provided implementation of the SimpleObject interface,
a DefaultSimpleObject. The application developer needs only to specify the columns in the table
that represent the name, value, and type of the SimpleObject.

SimpleObjectResultSetProcessor has many constructors. Each of these constructors takes the
column name in the table that represents the name and value of a SimpleObject. It also provides
constructors to specify whether the type attribute of the SimpleObject is either contained in a
column in the table, a literal passed to the constructor, or if it should be pulled from the table
name itself. The Fast4J API JavaDoc explains the use of each constructor in detail. Here is an
example of how to use SimpleObjectResultSetProcessor to construct SimpleObjects that
represent the environment configuration data.

Example database table Environment with configuration data:

TheType TheName TheValue

Configuration Url http://test.url.com

Configuration Clusters 1

Deliverable component Services component

Documentation doc1 ArchDocument

Here the SimpleObjectResultSetProcessor is used with adhoc SQLQuery for converting the query
results into SimpleObjects (for information on adhoc SQLQuery, refer to section 3.8):

CommandManager manager = new SQLCommandManager();
 Collection<?> values = manager.perform(new SQLCommand(
 new PostgresSQLConnectionFactory(), new SQLQuery(
 new SimpleObjectResultSetProcessor("TheName",
 "TheValue", "theType")),
 "select * from Environment "
 + "where thetype = 'Configuration' "));
 for (Iterator<?> i = values.iterator(); i.hasNext();) {
 System.out.println(i.next());
 }
}

Here is the output when we run the above code:

Configuration/Url/http://test.url.com
Configuration/Clusters/1

3.3.2 ResultSet Handling

The most important task in basic O/R mapping is to handle the gap between the type
representations in the database and their respective type representations by the JDBC drivers,
and the actual type used in the application Java object. The framework provides means for
bridging this fundamental gap in the form of ResultSetHandler interface.

public interface ResultSetHandler {
 public Object getResultSetValue(Object o) throws CheckedApplicationException;
}

Fast4J Persistence Features

Document Control

Page 53 of 116 New Mexico ASPEN
Online Fast4J Express

This interface defines a single method getResultSetValue() that handles the conversion between
the JDBC SQL types and Java types. Each column read from the database as an SQLType is
expected to pass through a provided implementation of this interface.

3.4.1.5. ResultSetManager

The ResultSetManager implements ResultSetHandler and provides an implementation to handle
the conversion of CLOB and BLOB SQLTypes to TextDocument and BinaryDocument,
respectively. Also, the ResultSetManager acts as a registry where all other implementations of
ResultSetHandler are registered. Once done with its own job of handling the result object,
ResultSetManager passes the object to the other ResultSetHandler implementations registered
with it in the same sequence they are registered, thus creating a chain of responsibility. Here is a
code snippet that shows how to register a Custom ResultSetHandler with the ResultSetManager:

These registrations of ResultSetHandlers can occur at the application startup or in a static block.
For web applications, this will often be in a startup Servlet. Note the the default setup of
ResultSetManager will work with most database drivers. Only in rare occasions (typtically when
working with older DB drivers) will you ever need to register an additional ResultSetHandler with
the manager.

3.4.1.6. Implementing a Custom ResultSetHandler

In the rare occasions where the default ResultSet handling mechanism doesn’t work (typically
only on older DB drivers) a custom ResultSetHandler may need to be created. This allow you to
customize the conversion of a SQL data type to a Java data type for these older JDBC drivers. To
create a custom ResultSetHandler the application developer should implement the
ResultSetHandler interface. The OracleResultSetHandler class provided by the Fast4J is an
example of how to create a Custom ResultSetHandler:

ResultSetManager.register(new OracleResultSetHandler());

public class OracleResultSetHandler implements ResultSetHandler {

 static {
 ResultSetManager.register(new OracleResultSetHandler());
 }

 public OracleResultSetHandler() {
 super();
 }

 /**
 * Return a java.util.Date/Calendar instead of the associated
 * Timestamp/java.sql.Date
 *
 */
 public Object getResultSetValue(Object o) {
 Object theReturnObject = o;

 if (o != null && o instanceof Timestamp) {
 Timestamp theTimestamp = (Timestamp) o;
 Calendar theCalendar = Calendar.getInstance();
 theCalendar.setTimeInMillis(theTimestamp.getTime());
 theReturnObject = theCalendar;
 } else if (o != null && o instanceof java.sql.Date) {
 java.sql.Date date = (java.sql.Date) o;

Fast4J Persistence Features

Document Control

Page 54 of 116 New Mexico ASPEN
Online Fast4J Express

One has to make sure to initialize the OracleResultSetHandler class in some startup code. The
static initializer block in the code above allows OracleResultSetHandler to register itself with the
ResultSetManager.

3.5. Filtering DomainObjects

The Filter objects allow you to conditionally include or exclude DomainObjects by using
getAll(Map<?, ?> parameters, Filter<T> theFilter) method of DAO. This allows one to selectively
narrow the query results without changing the underlying DAO implementation. (For details on
Filters, refer to section 2.7)

Let’s take the customer example from the above section, the select statement in the
CustomerDAO retrieves all the customers matching the id or Name.

 protected String getSelectStatement(Map<?, ?> params) {
 StringBuffer sql = new StringBuffer();
 sql.append("select ");
 sql.append("NAME AS NAME,");
 sql.append("DOB AS DOB,EMAIL AS EMAIL,");
 sql.append("CUSTID AS ID");
 sql.append(" from CUSTOMER where 1=1 ");
 if (params.containsKey("CUSTID")) {
 sql.append(" and CUSTID = ?");
 }
 if (params.containsKey("NAME")) {
 sql.append(" and NAME = ?");
 }
 return sql.toString();
 }

If we want to get only deloitte employees from the customers without changing the above select
statement, we can write a Filter which extends the DomainObjectFilter.

public class DeloitteCustomerObjectsFilter extends DomainObjectFilter<Customer> {

 public boolean include(Customer theObject) {

 if (theObject.getEmail() != null) {
 return theObject.getEmail().endsWith("@deloitte.com");
 }
 return false;
 }
}

The extended Filter class will be used in the getAll method of the DataAccessObject to filter the
domain objects. The below code returns only deloitte employees.

 theReturnObject = new java.util.Date(date.getTime());
 }
 return theReturnObject;
 }

}

Fast4J Persistence Features

Document Control

Page 55 of 116 New Mexico ASPEN
Online Fast4J Express

DataAccessObject<Customer> customerDao =
DefaultDAOFactory.getInstance().createFor(Customer.class);

Collection<Customer> employees = customerDao.getAll(new HashMap(), new
 DeloitteCustomerObjectsFilter());

3.6. Advanced O/R Mapping

Mapping composite database relationships to the domain model is a complex problem no matter
what O/R mapping tool is used. This section will demonstrate several solutions to tackle this
problem using the features provided in Fast4J. These solutions represent usage patterns for the
most common complex O/R mappings but should not be taken as-is for your specific problem.
Careful consideration should be given to your specific situation to ensure that the solution is well
designed. The usage patterns shown provide a good starting point for you to develop your own
solution by specializing their usage or combining them to create your own usage pattern.

3.6.1. Parent-Child Relationships

For the purposes of illustration, consider the following data model in which a customer has many
addresses, hence forming a 1-to-many (1-N) relationship. An address cannot exist outside of a
customer. The data model shown represents a composition relationship between Customer and
Address.

The recommended way of modeling such data is through composition at the domain layer. The
following code samples show composition between the Customer and Address domain objects:

Fast4J Persistence Features

Document Control

Page 56 of 116 New Mexico ASPEN
Online Fast4J Express

public class Customer extends AbstractDomainObject {

 private static final long serialVersionUID = 1L;

 private String name;
 private Date dob;
 private String email;
 private Collection<Address> addresses;

 public Collection<Address> getAddresses() {
 return addresses;
 }

 public void setAddresses(Collection<Address> addresses) {
 this.addresses = addresses;
 }
 // Rest of getter/setters
}

public class Address extends AbstractDomainObject {

 private static final long serialVersionUID = 1L;

 private String street;
 private String city;
 private String zip;
 private UUID customerID;

 public UUID getCustomerID() {
 return customerID;
 }

 public void setCustomerID(UUID customerID) {
 this.customerID = customerID;
 }
 // rest of getters/setters
}

The various approaches to modeling these scenarios are discussed in the following sections.

3.6.1.1. Using “Submap” and a ResultSetProcessor

A simple way of populating the composition relationship is to use a table join in the Select-SQL
query of the Customer DataAccessObject. The following code sample from the CustomerDAO
class shows a SQL join between the CUSTOMER and ADDRESS table:

public class CustomerDAO extends AbstractDAO<Customer> {

 protected String getSelectStatement(Map<?, ?> theMap) {
 StringBuffer sql = new StringBuffer();
 sql.append("select A.NAME AS NAME,A.DOB as DOB,");
 sql.append(" A.CUSTID as ID,");
 sql.append(" B.ID as ADDRESS_ID,B.STRRET as ADDRESS_STREET,");
 sql.append(" B.CITY as ADDRESS_CITY,B.ZIP as ADDRESS_ZIP,");
 sql.append(" B.CUSTOMER_ID as ADDRESS_CUSTOMERID");
 sql.append(" from CUSTOMER A, ADDRESS B");
 sql.append(" where B.CUSTOMER_ID = A.CUSTID");

Fast4J Persistence Features

Document Control

Page 57 of 116 New Mexico ASPEN
Online Fast4J Express

 if (theMap.containsKey("CUSTID")) {
 sql.append(" and A.CUSTID = B.CUSTOMER_ID and A.CUSTID = ?");
 }
 sql.append(" order by A.CUSTID");
 return sql.toString();
 }

 }

By using a SQL join, the ResultSet returned no longer has a 1-row to 1-object mapping. This is
because the SQL join returns a ResultSet with the customer data repeated for every address as
illustrated below:

CUSTOMER FIELDS ADDRESS FIELDS
Customer Address 1
Customer Address 2
Customer Address 3
…

Note that the select statement retrieves the CUSTOMER table fields with an “AS” clause that
matches the name of the attributes on the Customer domain object. This enables the population
of domain object attributes from the ResultSet map without using a Mapper.

More importantly, note that the ADDRESS table fields are being retrieved with an AS clause that
contains an “ADDRESS_” prefix. This prefix can be used to “submap” the ResultSet map in the
DomainObjectProcessor as shown below:

public Customer map(Map<String, ?> theMap) throws CheckedApplicationException {
 Customer theObject = new Customer();
 ObjectPopulator thePopulator = new ObjectPopulator(
 theMap, theObject, new DefaultPropertyPopulator());
 thePopulator.execute();
 Collection<Address> addresses = new ArrayList<Address>();
 addresses.add(mapAddress(CollectionHelper.subMap(theMap, "ADDRESS_")));
 theObject.setAddresses(addresses);
 return theObject;
}

private Address mapAddress(Map<String, ?> theRow) throws CheckedApplicationException {
 Address theAddress = new Address();
 ObjectPopulator thePopulator = new ObjectPopulator(theRow, theAddress,
 new DefaultPropertyPopulator());
 thePopulator.execute();
 return theAddress;
}

The submap(Map, String) method on the CollectionHelper class is used above to return a subset
of the ResultSet map. The subset returned contains only those values that have a key beginning
with “ADDRESS_”. It also removes this prefix from the key entries.

When the map method is first called, the Map now contains the key values:
 NAME

ID
DOB
ADDRESS_ID
ADDRESS_STREET
ADDRESS_CITY

 ADDRESS_ZIP
ADDRESS_CUSTOMERID

Fast4J Persistence Features

Document Control

Page 58 of 116 New Mexico ASPEN
Online Fast4J Express

These values are used to populate the Customer object. Only the first three values will be found
to have setters on the Customer object.

After CollectionHelper.subMap() is called with the ADDRESS_ argument, the submap now
contains the following key values:
 ID
 STREET
 CITY
 ZIP
 CUSTOMERID

As you can see, the prefix of ADDRESS_ was removed and only those values that were prefixed
with it were returned. This strategy allows the mapping to occur from a single result set with like-
named values (i.e. ID). Now the populated Address object can be associated with the Customer
object.

Since the DomainObjectResultSetProcessor will call the map() method once for every row in the
ResultSet, the resulting Customer objects will each have one Address object associated with
them. Also, the Customer objects will be duplicated for every additional address in the ResultSet.
So to prevent this duplication a custom ResultSetProcessor must be introduced.

The following custom ResultSetProcessor creates a single Customer object for a ResultSet with
multiple rows with data for each customer. For each row in the ResultSet, if the Customer is a
duplicate of one already in the list (identified by UUID), the address from the Customer object in
the result set will be added to the existing customer object and the duplicate Customer object will
be discarded. (Note that the protected and static modifiers are present on the class as it has been
defined as a nested class in the CustomerDAO)

 protected static class AddressSubmapResultSetProcessor extends
 DomainObjectResultSetProcessor<Customer> {

 protected Customer prevCustomer;

 public AddressSubmapResultSetProcessor() {
 super();
 }

 public AddressSubmapResultSetProcessor(
 DomainObjectProcessor<Customer> processor) {
 super(processor);
 }

 protected void processTheRow(List<Customer> theList, Map<String, ?> theRow)
 throws CheckedApplicationException {
 List<Customer> tempList = new ArrayList<Customer>();
 super.processTheRow(tempList, theRow);
 if (tempList.size() > 0) // make sure object not filtered out
 {
 Customer temp = tempList.get(0); // get the only
 // customer in list
 if (prevCustomer == null
 || !prevCustomer.getID().equals(temp.getID())) {
 prevCustomer = temp;
 theList.add(temp);
 } else {
 prevCustomer.getAddresses().addAll(temp.getAddresses());
 }
 }

Fast4J Persistence Features

Document Control

Page 59 of 116 New Mexico ASPEN
Online Fast4J Express

 }

 }

Note that the processTheRow method determines if an object is already in the list by comparing it
to the previous object handled by the ResultSetProcessor. This is why the SQL statement from
the getSelectStatement() method above included the “order by A.CUSTID” clause, in order to
assure that any duplicate Customer objects in the result set will be adjacent in order.

By combining a custom ResultSetProcessor and a submap, it is possible to populate 1-N
relationships very easily through SQL joins. This approach achieves a very high level of
performance as only a single database call is issued.

3.6.1.2. Using a Service Façade to Populate the Composition Relationship

Instead of performing table joins, it is possible to populate the object graph by first performing a
SQL select statement for the top-level object (CUSTOMER in our case), followed by a SQL select
statement to retrieve the collection of children objects (ADDRESS) by foreign key. This approach
is very simple but results in an additional SQL call to retrieve the child objects. Furthermore, this
approach is not viable for deeply-nested graphs (1-N-N) as the number of SQL calls grows
exponentially as the depth of the graph increases. For a discussion on how to populate deeply
nested object graphs, see section 3.6.

Since this usage pattern is a two-step process which first retrieves the parent object and then
retrieves the child objects, it is recommended to encapsulate this process in a façade in the
service layer of the application architecture. The following code sample shows how to perform
this two-step process:

public Customer getCustomer(UUID thePrimaryKey)
 throws CheckedApplicationException {
 Map<String, UUID> theMap = new HashMap<String, UUID>();
 theMap.put("CUSTID", thePrimaryKey);

 Customer theObject =
DefaultDAOFactory.getInstance().createFor(Customer.class).get(theMap);
 theObject.setAddresses(getAddressesForCustomer(theObject.getID()));
 return theObject;
}

private Collection<Address> getAddressesForCustomer(UUID theChildKey)
 throws CheckedApplicationException {

 Map<String, UUID> theMap = new HashMap<String, UUID>();
 theMap.put("CUSTOMER_ID", theChildKey);
 Collection<Address> theAddresses =
 DefaultDAOFactory.getInstance().createFor(Address.class).getAll(theMap);
 return theAddresses;
}

Notice that the getAll() call on the Address DataAccessObject uses the Customer object’s ID
property as a foreign key lookup on Address. This requires that a SQL statement which performs
the foreign-key lookup is available in the AddressDAO, as shown below:

protected String getSelectStatement(Map<?, ?> params) {
 StringBuffer sql = new StringBuffer();
 sql.append("select ");
 sql.append("ID AS ID, STRRET AS STREET,");

Fast4J Persistence Features

Document Control

Page 60 of 116 New Mexico ASPEN
Online Fast4J Express

 sql.append("ZIP AS ZIP,CITY AS CITY,");
 sql.append("CUSTOMER_ID AS CUSTOMERID");
 sql.append(" from ADDRESS where 1=1 ");
 if (params.containsKey("ID")) {
 sql.append(" and ID = ?");
 }
 else if (params.containsKey("CUSTOMER_ID")) {
 sql.append(" and CUSTOMER_ID = ?");
 }
 return sql.toString();
}

Note that this approach can be automatically code-generated by the Eclipse plug-in by specifying
the table relationships as part of the plug-in configuration. For details on code generation, refer to
Chapter 6.

3.6.2. Multi-Table Joins

Dealing with deeply-nested relationships increases the complexity of O/R mapping even further.
While no generic solution can be presented, very careful examination of your problem should be
conducted and a solution that blends the approaches shown in section 3.6.1 and the usage
shown below should be devised.

Using a single SQL join combined with the submap/ResultSetProcessor approach will yield the
highest level of performance for the deeply-nested case but will result in very complex ResultSet
handling.

Using the service-façade approach remains simple even in the deeply-nested case, but as the
depth of the object graph grows, the number of SQL calls grows with it exponentially leading to
severe performance issues. Consider the following scenarios:

1-N graph : Using the service façade approach, the two steps required to populate the object
graph result in two distinct SQL calls: first, get the parent; second, get the children.

1-N1-N2 graph : Using the service façade approach, the three steps required to populate the
object graph result in (2+N1) distinct SQL calls: first, get the parent; second, get the children;
third, for each child, get the grandchildren.

1-N1-N2-N3 graph : The number of distinct SQL’s grows to (2+N1+N1*N2)

As can be seen here, an approach must be devised to accommodate deeply nested graphs
without an explosion in the number of SQL statements required.
This can be accomplished using SQL IN clauses.

Population of the 1-N relationship between parent and child can be done using the techniques
described in section 3.6.1. Careful consideration should be given to the population of the
child/grandchild relationship. The following will discuss how to retrieve all grandchild objects
given a collection of child keys and how to associate the correct grandchild objects to the correct
child objects.

Let us take an example of Customer, Order and OrderDetails. A Customer can have N number of
orders and each order can contain M number of Orderdetails (line items). First, the population of
the 1-N relationship between Customer and Order is shown below using a service-façade usage
pattern:

public Customer getCustomer(UUID thePrimaryKey)
 throws CheckedApplicationException {

Fast4J Persistence Features

Document Control

Page 61 of 116 New Mexico ASPEN
Online Fast4J Express

 Map<String, UUID> theMap = new HashMap<String, UUID>();
 theMap.put("CUSTID", thePrimaryKey);
 Customer theObject = DefaultDAOFactory.getInstance()
 .createFor(Customer.class).get(theMap);
 theObject.setOrders(getOrdersForCustomer(theObject.getID()));
 return theObject;
}

private Collection<Order> getOrdersForCustomer(UUID theChildKey)
 throws CheckedApplicationException {

 Map<String, UUID> params = new HashMap<String, UUID>();
 params.put("CUSTOMER_ID", theChildKey);
 Collection<Order> theOrders = DefaultDAOFactory.getInstance()
 .createFor(Order.class).getAll(params);
 Map<UUID, Order> orders = new HashMap<UUID, Order>();
 for (Iterator<Order> i = theOrders.iterator(); i.hasNext();) {
 Order theChild = (Order) i.next();
 orders.put(theChild.getID(), theChild);
 }
 getOrderDetailsForAllOrders(orders);
 return theOrders;
}

It is important to note that the population of the child(Order)-to-grandchild (OrderDetails)
relationship is NOT done inside the iteration loop for each child as it would result in a potentially
large number of SQL’s. Instead, the child objects are accumulated in a Map with key equal to the
child’s unique ID. This Map is then passed to a method that gets all grandchild objects for all
child objects, as shown below:

private void getOrderDetailsForAllOrders(Map<UUID, Order> orders)
 throws CheckedApplicationException {
 Map<String, Set<UUID>> params = new HashMap<String, Set<UUID>>();
 params.put("ORDER_ID", orders.keySet());
 // Get all Grand children for all Children
 Collection<OrderDetails> theGrandchildren = DefaultDAOFactory
 .getInstance().createFor(OrderDetails.class).getAll(params);
 // Iterate through the grand children
 for (Iterator<OrderDetails> i = theGrandchildren.iterator(); i
 .hasNext();) {
 OrderDetails theGrandchild = i.next();
 Order theChild = orders.get(theGrandchild.getOrderID());
 if (theChild.getOrderDetails() == null) {
 theChild.setOrderDetails(new ArrayList<OrderDetails>());
 }
 theChild.getOrderDetails().add(theGrandchild);
 }
}

Instead of retrieving the grandchildren on a per-child basis, the method above retrieves all
grandchildren for a set of child IDs. This dictates the use of an IN clause in the grandchild
DataAccessObject. Once the collection of all grandchildren is retrieved using a single SQL call,
the collection is iterated over and the grandchild is associated to the proper child by using the
grandchild’s foreign key property. The code sample below shows the grandchild
(OrderDetailsDAO) DAO’s ability to receive a Collection as a parameter to its
getSelectStatement() and getSelectParameters() methods and convert the Collection to a proper
SQL IN clause along with the necessary parameter replacement.

protected List<?> getSelectParameters(Map<?, ?> params) {
 List<Object> theMap = new ArrayList<Object>();

Fast4J Persistence Features

Document Control

Page 62 of 116 New Mexico ASPEN
Online Fast4J Express

 if (params.containsKey("ID")) {
 theMap.add(((UUID) params.get("ID")).getValue());
 } else if (params.containsKey("ORDER_ID")) {
 if (Collection.class.isAssignableFrom(params.get("ORDER_ID")
 .getClass())) {
 List<Object> theFieldIDs = new ArrayList<Object>(
 (Collection) params.get("ORDER_ID"));
 SQLHelper.addBindValue(theFieldIDs, theMap);
 } else {
 theMap.add(((UUID) params.get("ORDER_ID")).getValue());
 }
 }
 return theMap;
}

3.7. Persistence Commands

The Fast4J provides a set of Command objects for performing persistence operations. There is a
persistence command for each of the basic persistence operations: create, read, update, and
delete. The following UML diagram depicts the view of the persistence Command objects
provided by the framework.

The persistence Command objects use DataAccessObject implementations to execute their
operations. By default, the persistence Command objects will attempt to lookup the DAO using
the class of the DomainObject (eg. Customer.class) as the key. If you did not register your DAOs
using the class of the associated DomainObject, you will need to provide the key in the
command’s constructor.

Fast4J Persistence Features

Document Control

Page 63 of 116 New Mexico ASPEN
Online Fast4J Express

Refer to the Fast4J API JavaDoc for more details on the different constructors with each of the
Commands. In our illustrations we continue with our Customer/CustomerDAO.

3.7.1. CreateObjectCommand

The CreateObjectCommand object is used to save a DomainObject to the database via its DAO.

Customer customer = new Customer();
customer.setName("Fast4J");
customer.setEmail("Fast4J@deloitte.com");
customer.setDob(new GregorianCalendar().getTime());

Command createCommand = new CreateObjectCommand<Customer>(customer);
Collection<?> errors = createCommand.execute();

3.7.2. UpdateObjectCommand

The UpdateObjectCommand object is used to save a DomainObject to the database via its DAO.
In this example we are retrieving the Customer object we created in the above example and
updating the Email address of that Customer.

Customer customer = DefaultDAOFactory.getInstance().createFor(Customer.class).findByKey("NAME",
"Fast4J");
customer.setEmail("deloitte@Fast4J.com");
Command updateCommand = new UpdateObjectCommand<Customer>(customer);
Collection<?> errors = updateCommand.execute();

3.7.3. DeleteObjectCommand

The DeleteObjectCommand object is used to delete a DomainObject from the database. In this
example we are retreiving the Customer object we updated in the above example and deleting it
from the database.

Customer customer = DefaultDAOFactory.getInstance().createFor(Customer.class).findByKey("NAME",
"Fast4J");
Command delCommand = new DeleteObjectCommand<Customer>(customer);
Collection<?> errors = delCommand.execute();

3.7.4. UpsertObjectCommand

The UpsertObjectCommand object is used to perform an upsert operation, conditionally creating
a DomainObject in the database if it doesn’t already exist, or updating it if it does. This command
can be useful in situations where the application doesn’t know if the domain object exists already.

Customer customer = new Customer();
customer.setName("Fast4J");
customer.setEmail("Fast4J@deloitte.com");
customer.setDob(new Date());
//insert
Command upsertCommand = new UpsertObjectCommand<Customer>(customer);
Collection<?> errors = upsertCommand.execute();
//update
customer.setName("Deloitte");
customer.setEmail("deloitte@deloitte.com");
 upsertCommand = new UpsertObjectCommand<Customer>(customer);
 errors = upsertCommand.execute();

Fast4J Persistence Features

Document Control

Page 64 of 116 New Mexico ASPEN
Online Fast4J Express

3.7.5. Transactions and PersistenceCommandManager

The Fast4J PersistenceCommandManager class is used in the execution of the persistence
commands discussed above. It can execute a single command or a group of commands it
receives as a CommandList object.

PersistenceCommandManager is responsible for providing transaction support. When a group of
persistence commands are provided, they can be executed as a single unit of work i.e. a
transaction. If an exception occurs while executing a CommandList of persistence commands all
the changes to the database by the command’s execution get rolled back, providing transactional
behavior for the set of Commands. Also, the exception will be propagated back to the invoker by
throwing a CheckedApplicationException.

PersistenceCommandManager assumes that a command will return only Errors, it must not be
used for commands that return results. If a command returns any results,
PersistenceCommandManager will rollback the entire transaction. To execute commands that
return results refer section 3.8.4. Note that the persistence commands all invoke the validate()
method on the domain object passed to the PersistenceCommandManager. This means that if
any of the objects fail validation that the transaction will be rolled back.

Here is an example of executing a single command.

Customer customer=new Customer();
customer.setDob(new Date());
customer.setName("Fowler");
customer.setEmail("Chrisfowler@thoughtworks.com");

Command createCommand=new CreateObjectCommand<Customer>(customer);
PersistenceCommandManager pcmdManager = new PersistenceCommandManager();
Collection<?> errors=pcmdManager.perform(createCommand);

The next example will illustrate PersistenceCommandManager executing a list of commands as a
single transaction. Since the CustID is the primary key, if we try to insert two identical records, we
should get an Exception. Here is the data that exists in the database.

CustID Name BirthDate Email

1150473506220001 David 1979-08-29 abcdasisk@deloitte.com

1150473527250001 Karthik 1983-08-29 abcdkarthik@deloitte.com

Here we are using PersistenceCommandManager to execute a list of CreateObjectCommand
objects that try to create a duplicate record.

Customer customer=new Customer();
customer.setDob(new Date());
customer.setName("Fowler");
customer.setEmail("Chrisfowler@thoughtworks.com");

// Create a Customer Insert Command
Command firstInsert = new CreateObjectCommand<Customer>(customer);
// Command trying to create a duplicate record of the Customer
Command secondInsert = new CreateObjectCommand<Customer>(customer);

CommandList commands = new CommandList();
//Add commands to Command List
commands.add(firstInsert);
commands.add(secondInsert);

Fast4J Persistence Features

Document Control

Page 65 of 116 New Mexico ASPEN
Online Fast4J Express

PersistenceCommandManager cmdManager=new PersistenceCommandManager();
try {
 cmdManager.perform(commands);
} catch (CheckedApplicationException e) {
 System.err.println("Exception occured, hence the DB operations are rollbacked. ");
}

After executing through the above code the logs contain the following trace that shows that the
transaction failed.

Jul 21, 2009 5:07:26 PM com.deloitte.common.objects.framework.CheckedApplicationException <init>
SEVERE: An error has occured in the Data Layer, while parsing the Query, ERROR: duplicate key violates
unique constraint "customer_pkey"
Jul 21, 2009 5:07:26 PM com.deloitte.common.persistence.CheckedPersistenceException handleException
SEVERE: SQLException specific Data: SQLState = 23505 ErrorCode = 0
Jul 21, 2009 5:07:26 PM com.deloitte.common.objects.framework.CheckedApplicationException <init>
SEVERE: Error occured in execution of command list, An error has occured in the Data Layer, while parsing
the Query
Jul 21, 2009 5:07:26 PM com.deloitte.common.persistence.TransactionContext rollback
INFO: Transaction rolled back

As should be the case, upon the completion of execution there is no new data in the database.
The first update was rolled back upon execution failure.

Now that we have seen a failed transaction, here is an example that demonstrates a successful
transaction. We are simply creating a new Customer using a Command and in the next
Command we are updating the corresponding Email address.

// Create a Customer
Customer customer=new Customer();
customer.setDob(new Date());
customer.setName("Chris");
customer.setEmail("Chrisfowler@thoughtworks.com");

// Add the Customer to the CreateObjectCommand
Command createCommand=new CreateObjectCommand<Customer>(customer);

// Update Command to change the Email address
customer.setEmail("abcdfowler@objects.com");
Command updateCommand=new UpdateObjectCommand<Customer>(customer);

CommandList commands = new CommandList();
commands.add(createCommand);
commands.add(updateCommand);

PersistenceCommandManager cmdManager = new PersistenceCommandManager();
Collection<?> errors=cmdManager.perform(commands);

After executing through the above code here is the data that is in the database that shows the
updated email address of the customer as “abcdfowler@objects.com”.

CustID Name BirthDate Email

1150473506220001 David 1979-08-29 abcdasisk@deloitte.com

1150473527250001 Karthik 1983-08-29 abcdkarthik@deloitte.com

1150627293645001 Chris 1966-08.20 abcdfowler@objects.com

Fast4J Persistence Features

Document Control

Page 66 of 116 New Mexico ASPEN
Online Fast4J Express

It should be noted that PersistenceCommandManager can not handle distributed (XA)
transactions. All commands sent to it will use the same ConnectionFactory implementation, that
of the first Command in the CommandList. In order to support a distributed transaction, refer to
Chapter 7.

3.8. Adhoc SQL

Many projects have situations where a SQL statement needs to be executed, but the DAO CRUD
model might not be appropriate. In order to provide this, Fast4J provides several Command
objects specifically designed to execute SQL queries and updates that are not dependent upon
the DAOs. Note that this mechanism is not intended as a replacement for DataAccessObjects or
DomainObjects and should only be used where appropriate.

As an example, consider a case where we wanted to find the number of customers that existed in
our database. This query is not dependent upon the state or identity of any existing customer in
the database, nor would it even return a complete domain object. By providing Adhoc SQL, the
framework alleviates the need to instantiate a Customer object simply to perform the query.

UML Class Structure:

Fast4J Persistence Features

Document Control

Page 67 of 116 New Mexico ASPEN
Online Fast4J Express

3.8.1. SQLUpdate

This object allows you to execute SQL or DML that updates the values in the database or
creates, alters or drops database elements.

For the following example, here is the example data.

CustID Name BirthDate Email

1150473506220001 David 1979-08-29 abcdasisk@deloitte.com

1150473527250001 Karthik 1983-08-29 abcdkarthik@deloitte.com

1150627293645001 Chris 1966-08.20 abcdfowler@objects.com

In this example we will execute the SQL to remove a row(s) from the database and determine the
number of records affected.

String sql="Delete from Customer where Name = ? ";
List<String> parameters = new ArrayList<String>();
parameters.add("Chris");

SQLUpdate updater = new SQLUpdate();

// Inject the Datasource to be used to execute this update
updater.setDataSource(new
 PostgresSQLConnectionFactory().getDataSource(PostgresSQLConnectionFactory.class));
System.out.println("Rows Deleted = " + updater.getUpdateResults(sql,parameters));

Output from execution:

Rows Deleted = 1

There is now one row less in the database.

3.8.2. SQLQuery

SQLQuery works similar to SQLUpdate but it is expected to return the results as a result of its
execution. Where the SQLUpdate object will return an integer value with the update count, a
SQLQuery will return a Collection of Map objects with the query results, keyed by the column
names in the result set. The Objects are returned based on the SQLType from the database.

String sql = "Select count(*) as total from Customer";
SQLQuery query = new SQLQuery();

query.setDataSource(new
 PostgresSQLConnectionFactory().getDataSource(PostgresSQLConnectionFactory.class));
Collection<?> results = query.getQueryResults(sql);
System.out.println(results); // Map returns one row with the Key = TOTAL and an Integer Value

Output from execution:

 [{TOTAL=2}]

Note the same restrictions around XA transactions hold true for SQLUpdate as well as for the
persistence commands.

Fast4J Persistence Features

Document Control

Page 68 of 116 New Mexico ASPEN
Online Fast4J Express

3.8.3. SQLCommand

The SQLCommand object provides command support for ad-hoc SQL, similar to that provided by
the PersistenceCommandManager and its create, update, and delete commands. The
SQLCommand object is essentially a Command wrapper around a SQLQuery or SQLUpdate
object, allowing them to be executed in a command pattern fashion. The default implementation
for a SQLCommand is a SQLQuery and a BasicResultSetHandler, but other implementations of
SQLProcessor and its associated ResultSetProcessor can be provided via the SQLCommand
object’s constructors.

Using the previous example, here are the changes needed to execute it as a SQLCommand:

String sql = "Select count(*) as total from Customer";
Command command = new SQLCommand(new PostgresSQLConnectionFactory(), sql);
Collection<?> results = command.execute();
System.out.println(results);

Output from execution

[{TOTAL=2}]

The results are identical to executing the SQLQuery directly. The main difference is that the sql is
wrapped in a Command implementation. Command objects can be executed as a CommandList
which allows a chaining of sql to be executed as a unit of work. Here is an example for
SQLUpdate:

String sql = "Delete from Customer where Name = 'Fowler'";

Command command = new SQLCommand(new PostgresSQLConnectionFactory(),
 new SQLUpdate(), sql);
Collection<?> results = command.execute();
System.out.println("<Number of Rows updated>" + results);

Output from execution:

<Number of Rows updated>[{RESULTS=1}]

3.8.4. Executing SQLCommands with SQLCommandManager

The SQLCommandManager object is used to execute a single SQLCommand or a CommandList
of SQLCommands. The two subclasses of CommandManager, PersistenceCommandManager
and SQLCommandManager help one to execute the commands in a sequence and as a single
transaction. The difference between the two CommandManager implementations is in the type of
commands they are built to execute. The PersistenceCommandManager executes a
CommandList with Commands that are not used to retrieve data (only CUD operations), where
the SQLCommandManager accepts a CommandList with SQLCommand that are primarily
designed to execute read operations. The SQLCommandManager returns a Collection of results
from the database whereas the PersistenceCommandManager returns a Collection of Errors
collected while executing.

The results from Command objects with SQLQuery objects in a CommandList object are
appended to the single results List returned from the perform() method. Similarly, results from
Command objects with SQLUpdate objects will also append to this returned List; in this case, it
will be a single entry in the List containing a Map object with one entry. This entry will be keyed by
the string “RESULTS”, and will contain the update count for the SQLUpdate execution.

Fast4J Persistence Features

Document Control

Page 69 of 116 New Mexico ASPEN
Online Fast4J Express

CommandList theList = new CommandList();
PostgresSQLConnectionFactory f = new PostgresSQLConnectionFactory();

theList.add(new SQLCommand(f, new SQLUpdate(),
 "Insert into customer(custid,name) values('1','B4')"));
theList.add(new SQLCommand(f, new SQLUpdate(),
 "update customer set name = 'After'"));
theList.add(new SQLCommand(f, "Select * from customer"));

CommandManager manager = new SQLCommandManager();
List<Map<String, ?>> list = (List<Map<String, ?>>) manager
 .perform(theList);

Map<String, ?> row1 = list.get(0);
Map<String, ?> row2 = list.get(1);
Map<String, ?> row3 = list.get(2);

System.err.println("Rows Inserted = " + row1.get("RESULTS"));
System.err.println("Rows Updated = " + row2.get("RESULTS"));
System.err.println("Value of Column = " + row3.get("NAME"));

Output from execution:

Rows Inserted = 1
Rows Updated = 1
Value of Column = After

Note the table-level DML statements(Drop, Create) in the database did not return any rows
updated so they were ignored.

Contract No. PSC 12-630-4000-0001

4. Fast4J Services

The Fast4J Express framework provides certain features that facilitate SOA implementation with
Web services. The Fast4J framework allows the client code to remain independent of any third
party framework or API code used for accessing the webservices by introducing an abstraction
layer between the application client code and the actual webservice invocation code. For
implementations not utilizing a 3rd-party webservices engine, it also provides features that simplify
the work of a service consumer by handling the most complex aspects of Web service messaging
over HTTP and parsing the results.

The abstraction layer between the client code and the underlying plumbing implementing the web
services call (or for inbound calls, the webservice receipt) is referred to as the “services façade”.
The following sequence diagram depicts how a service façade eliminates the plumbing of
webservice client code from the business service that is invoking it. A business service method
can call a webservice (or possibly a queue) service in a single invocation. The invocation of a
webservice typically requires a significant amount of “plumbing” work in order to marshall and
unmarshall the data from a DomainObject into the necessary object required by the webservice
stuf. Fast4J Services Framework abstracts most of these complexities involved in invoking a
webservice. Domain object conversion, population and mapping to the objects required by the
webservice and vice-versa is achieved by making use of Core component tools.

The main benefits of using the Fast4J services framework are:

• Provides a service façade layer which enforces a clean separation between the
business layer and the actual webservice invocation code.

• Centralizes all webservice client configurations to a single file.

• Provides a consistent approach to access webservices.

• Externalizes the configuration (endpoints) from the code.

• Gives client the flexibility to invoke a webservice using any third party
frameworks and tools.

4.1. Service Interface

The Service interface is the primary entry point to the Fast4J services framework. It has only one
method as shown below.

The ServiceDescription contains the following metadata information about the webservice, which
the service class invokes.

Url – URL of the wsdl file or the webservice endpoint URL.
Protocol – protocol used to invoke a webservice
QnameNameSpaceUri – Default name space of the webservice.
Qname – Name of the service as described in WSDL.

public interface Service {

 public void setServiceDescription(ServiceDescription description);

}

public class ServiceDescription {

 private String url;

 private String protocol;

Fast4J Services

Document Control

Page 71 of 116 New Mexico ASPEN
Online Fast4J Express

4.2. Using the Fast4J Service Layer

All the service façade classes must implement the Service interface. The Service Façade must
declare interfaces which are used to hide the implementation details of service. This interface
acts as a key and used to get the actual implementation at runtime. The service façade interface
must extend the service interface and declares the methods which will correspond to webservice
invocations.

The service façade implementation class must implement the service interface which delegates
the responsibility of marshalling, invoking the service and unmarshalling to the underlying
framework such as JAX-WS/JAXB, Axis or Xfire. It should also implement the AbstractService
class, which provides the default implementation of the Service interface. The following class
diagram shows hows business service uses service façade and Fast4J services framework.

Services Framework- architecture

4.2.1 Service Registration

Once the service façade implementation class is delared, it needs to be registered with the
DefaultServiceFactory. The DefaultServiceFactory can then be later used to retrive the Service
Façade implemementation class associated with the key. It is recommended practice to use the
specific interface for that service as the key for registering and looking up the Service with
DefaultServiceFactory. This hides the implementation class from the client code and provides
loose coupling. For example, consider the following interface and implementation classes

 public String qnameNameSpaceUri;

 public String qname;

 // setters and getters
}

Fast4J Services

Document Control

Page 72 of 116 New Mexico ASPEN
Online Fast4J Express

And here is an example of how a service interface is associated with it’s service façade
implementation and configuration information (in the ServiceDescription).

Once registered, the Service may then be retieved using the key, in this case the
CurrentDateTimeService interface class:

There are situations where you may have multiple services with the same service interface
(possibly with different Webservice endpoints). In this scenario the service interface may not be
used to register both the services, so the registerByArtificialKey method should be used to
register a Service with any arbitrary key. This allows any custom-defined key value to be used for
the key (most commonly a constant String value):

4.2.2. Configuration

Similar to DAO configuration, there are two different ways in which the Fast4J services
component can be configured, either with XML or programmatically.

4.2.2.1. XML File-Based Configuration

The loader implementation provided for the services framework, XMLServiceLoader, registering
the services with the DefaultServiceFactory with their necessary configuration information in a
way analogous to the XMLPersistenceLoader. The following is an example of how the above
service would be configured using the XMLServiceLoader.

public interface CurrentDateTimeService extends Service {

 public DateTimeObject getcurrentDate(String timeZone) throws
CheckedApplicationException;

 public List<String> getTimeZoneNames(String timeZone) throws
CheckedApplicationException;

 public boolean isDayTime(String timeZone) throws CheckedApplicationException;
}

public class CurrentDateTimeServiceFacadeImpl extends AbstractService implements
CurrentDateTimeService{
//Implementation of methods to call the webservice
}

// Registering a Service
ServiceDescription description = new ServiceDescription();
description.setUrl("some url");
…

DefaultServiceFactory.getInstance().register(CurrentDateTimeService.class, description,
 new CurrentDateTimeServiceFacadeImpl());

// use the DefaultServiceFactory to get the service
CurrentDateTimeService service = DefaultServiceFactory.getInstance()
 .createFor(CurrentDateTimeService.class);

DefaultServiceFactory.getInstance().registerByArtificialKey("CurrentDateTimeService", description,
 new CurrentDateTimeServiceFacadeImpl());

Fast4J Services

Document Control

Page 73 of 116 New Mexico ASPEN
Online Fast4J Express

The ”service” element in the XML document would associate the following items:

key- Interface containing the methods corresponding to all/some of the operations in a
wsdl.
serviceName – The class implementing the Service interface to call a webservice. This
class should also implements the interface mentioned in the key attribute.
endpoint – WSDL URL describing the service or the webservice endpoint URL.
qname – service name in wsdl:service.
qnameNameSpaceUri – targetNamespace specified in the wsdl.
protocol (optional attribute) – protocol used to call the service over HTTP(GET or

POST).

This loader should be created during application startup as follows:

Once all the services are loaded at startup, one can get the handle on the service class by using
DefaultServiceFactory with the interface as key.

4.2.2.2. Programmatic Configuration

We can also use the framework to configure services programmatically; the code snippet shown
below provides an example. The ServiceDescription object holds values of endpoint address
(wsdl URL), QName, and name space URI.

4.2.3. Consuming webservices

It is recommended to use a JAX-WS compliant set of tools for implementing your web services. In
this case, the Fast4J Framework provides the abstraction layer, or services façade, which

<services>
 <service
 key="com.deloitte.common.fast4jsamplecode.chapter5.CurrentDateTimeService"

 serviceName="com.deloitte.common.fast4jsamplecode.chapter5.CurrentDateTimeServiceFaca
deImpl"
 endpoint="http://markitup.com/WebServices/TimeZones.asmx?wsdl"
 qnameNameSpaceUri="http://MarkItUp.com/WebServices/2006/01/18/TimeZones"
 qname="TimeZones">
 </service>
</services>

new XMLServiceLoader("/com/deloitte/common/fast4jsamplecode/chapter5/services.xml")
 .loadValues();

//use the DefaultServiceFactory to get the service
CurrentDateTimeService service =
DefaultServiceFactory.getInstance().createFor(CurrentDateTimeService.class);
service.getCurrentDateTime(“Central Standard Time”);

CurrentDateTimeService service = new CurrentDateTimeServiceFacadeImpl();
ServiceDescription description = new ServiceDescription(
 "http://markitup.com/WebServices/TimeZones.asmx?wsdl",
 "http://MarkItUp.com/WebServices/2006/01/18/TimeZones",
 "TimeZones");

DefaultServiceFactory.getInstance().register(CurrentDateTimeService.class, description, service);

Fast4J Services

Document Control

Page 74 of 116 New Mexico ASPEN
Online Fast4J Express

insulates the client code from the details of the JAX-WS client stubs. However, the Fast4J
framework does provide a lightweight alternative for implementing a web service without any 3rd-
party library dependencies. Both of these approaches are described below.

As with other architectural boundaries in Fast4J applications, DomainObjects should always be
used as both the input and/or output from the services layer (via the services façade). Having all
communication occur with domain objects helps promotes decoupling between the business and
service layers.

Let’s look at an example that shows how to consume a web service that returns a current date
and time given a specific time zone. In order to invoke a Web service the consumer needs to get
the information regarding the location of the service. This information can be found in the WSDL
definition written for a service. This information about the location and service namespace is
stored in a ServiceDescription object.

The DomainObject is defined in this case as a simple DateTimeObject holding a current Date and
Time in a particular time zone that a Web service will return.

4.2.4. Implementing using JAX-WS

For our example, we will use the JAX-WS reference implementation (https://jax-ws.dev.java.net/)
to create client side artifacts. The wsimport tool generates the client side artifacts required to
invoke the webservice by using the wsdl
http://markitup.com/WebServices/TimeZones.asmx?wsdl.

Once the client side objects and stubs are created, we will create an implementation class by
extending AbstractService and by implementing the service as shown below in the code. The
core implementation of the webservice invocation will be done in this class by using the artifacts
generated by the wsimport tool.

public class DateTimeObject extends AbstractDomainObject {

 private static final long serialVersionUID = 1L;

 private String currentDateTime;

 public String getCurrentDateTime() {
 return currentDateTime;
 }

 public void setCurrentDateTime(String currentDateTime) {
 this.currentDateTime = currentDateTime;
 }

 @Override
 public String toString() {
 // TODO Auto-generated method stub
 return "currentDateTime: " + currentDateTime;
 }
}

public class CurrentDateTimeServiceFacadeImpl extends AbstractService implements
CurrentDateTimeService{

 private TimeZones getTimeZones() throws CheckedApplicationException {
 URL url;
 try {
 url = new URL(getServiceDescription().getUrl());
 } catch (MalformedURLException e) {
 throw new CheckedApplicationException(this.getClass(), e
 .getMessage());

http://markitup.com/WebServices/TimeZones.asmx?wsdl

Fast4J Services

Document Control

Page 75 of 116 New Mexico ASPEN
Online Fast4J Express

The TimeZonesSoap is the core interface generated by the wsimport tool. This generated
interface exposes all the methods in the wsdl as java methods. One needs to get the handle on
this interface to call any method of the webservice. This can be achived by using the TimeZones
class. There are different constructors available in TimeZones class that provides flexibility to
configure webservice endpoint (like production, staging or testing).

It is recommended practice for all interactions with the services façade occur in the business layer
of the application. The code below shows the usage of the service façade method in an example
business service.

4.2.5. Implementing using AbstractHTTPUrlService

There are situations where one wants to invoke a webservice with a SOAP request directly and
eliminate the dependency on any third party frameworks or tools. The Fast4J Services
component solves this problem by providing AbstractHTTPUrlService, an abstract implementation
of Service interface.
The AbstractHTTPUrlService class in the service framework provides an abstract implementation
to invoke a webservice using java.net.HttpUrlConnection. Although it is not recommended to use
this in production applications (use a JAX-WS based implementation instead), it provides utilities
to call a simple webservice with soap payload.

While using HttpUrlConnection it is important to mention the protocol on which a webservice is
going to be called, for this the framework provides an extra configuration parameter “protocol”.

 }
 QName qname = new QName(getServiceDescription().getQnameNameSpaceUri(),
 getServiceDescription().getQname());
 TimeZones t = new TimeZones(url, qname);
 return t;

 }

 public DateTimeObject getcurrentDate(String timeZone)
 throws CheckedApplicationException {

 Calendar currentDate = this.getTimeZones().getTimeZonesSoap()
 .currentDateTime(timeZone).toGregorianCalendar();

 DateTimeObject dateTime = new DateTimeObject();
 dateTime.setCurrentDateTime(currentDate.toString());
 return dateTime;

 }
}

}

public class SampleBusinessService {

 public DateTimeObject getCurrentDateTime(String timeZone)
 throws CheckedApplicationException {
 // use the DefaultServiceFactory to get the service
 CurrentDateTimeService service = DefaultServiceFactory.getInstance()
 .createFor(CurrentDateTimeService.class);

 return service.getcurrentDate(timeZone);

 }

}

Fast4J Services

Document Control

Page 76 of 116 New Mexico ASPEN
Online Fast4J Express

The limitation in extending the AbstractHTTPUrlService is that we can invoke only one
webservice method and hence the SOAP payload (request) contains the method name. Also the
HttpUrlConnection needs a service URL, not a wsdl URL.

4.2.5.1. Constructing a SOAP message

AbstractHTTPUrlService has several methods that assemble the pieces of a SOAP message to
be posted to a web service. Here is how the assembling happens in AbstractHTTPUrlService.

In most of the cases the default final implementations provided by getHeader() and getFooter() in
AbstractHTTPUrlService are sufficient. In such a case, getBody(Map<?, ?> map) is the only
method that needs to be overridden in the subclass to supply run time parameters to the web
service embedded in a SOAP message. If the SOAP headers require additional or different
information then it is provided in the getHeader() and getFooter() methods of
AbstractHTTPUrlService, the subclass will have to override the getMessage() method.

Typically, supplying parameters to a Web service happens in the getBody() method. The client
program using the Service has to supply the runtime parameters in a Map to the invoke method
of the subclass AbstractHTTPUrlService and the getBody() method uses this map to construct
the SOAP body with runtime parameters.

The following client code illustrates the sending of runtime parameters to the Service to be
passed to the Web service

Now if we look back at the SOAP message expected by the service provider we can find that
there is a parameter <timeZoneName> that has to be sent in a request body.

<service key=" com.deloitte.common.fast4jsamplecode.chapter5.CurrentDateTimeHTTPService "
 serviceName="com.deloitte.common.fast4jsamplecode.chapter5.CurrentDateTimeHTTPService
"
 endpoint="http://markitup.com/WebServices/TimeZones.asmx"
 qnameNameSpaceUri="http://MarkItUp.com/WebServices/2006/01/18/TimeZones"
 qname="CurrentDateTimeResponse" protocol="POST">

</service>

protected String getMessage(Map<?, ?> parameters) {
 return getHeader() + getBody(parameters) + getFooter();
}

Map<String, String> params = new HashMap<String, String>();
params.put("timezone", timeZone);
CurrentDateTimeHTTPService service = DefaultServiceFactory
 .getInstance().createFor(CurrentDateTimeHTTPService.class);
Collection<DomainObject> results = (Collection<DomainObject>) service
 .invoke(params);

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <CurrentDateTime

 xmlns="http://MarkItUp.com/WebServices/2006/01/18/TimeZones">

 <timeZoneName>string</timeZoneName>

 </CurrentDateTime>

Fast4J Services

Document Control

Page 77 of 116 New Mexico ASPEN
Online Fast4J Express

According to the message format, we have to send the time zone name for which we are
requesting the current date and time. In order to do this, we must override the getBody() method
as follows:

The default header created by the AbstractHTTPUrlService in getHeader() is valid in this case.
Otherwise, In order to modify the message header contents, we must override the getMessage()
method to assemble the exact SOAP message required by the Web service.

4.2.5.2. Parsing the Results:

The results from a Web service invocation are retrieved as a SOAP message. However, the
response body may not always include the results block. In case of certain exceptions or errors at
the provider, the SOAP response body may include only information regarding the failure
conditions. If a failure occurs, the response contains a standard element by name <SOAP-
ENV:Fault>. This SOAP fault will be identified by AbstractHTTPUrlService, and result in a
CheckedApplicationException with a relevant message being thrown back to the client.

Upon receipt of successful SOAP responses from the Web service, the resulting XML must be
parsed and used to construct a DomainObject. To do this, the subclass of
AbstractHTTPUrlService has to identify the node in the XML response containing the response
values. It is from this node that a Map object will be populated, which can then be used to
populate a DomainObject using the map() method.

 </soap:Body>

</soap:Envelope>

public class CurrentDateTimeHTTPService extends AbstractHTTPUrlService {

 @Override
 // create the SOAP Payload
 protected String getBody(Map<?, ?> parameters) {

 StringBuffer xml = new StringBuffer();
 xml.append("<SOAP-ENV:Body>");
 xml.append("<CurrentDateTime
 xmlns='http://MarkItUp.com/WebServices/2006/01/18/TimeZones'>");
 xml.append("<timeZoneName>");
 xml.append((String) parameters.get("timezone"));
 xml.append("</timeZoneName></CurrentDateTime>");
 xml.append("</SOAP-ENV:Body>");
 System.out.println("body : " + xml.toString());
 return xml.toString();
 }
}

public class CurrentDateTimeHTTPService extends AbstractHTTPUrlService {

 protected final String getMessage(Map<?, ?> parameters) {
 StringBuffer xml = new StringBuffer();
 xml.append("<?xml version=\"1.0\" encoding=\"utf-8\"?>");
 xml.append("<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-
 instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
 xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">");
 xml.append(getBody(parameters));
 xml.append(getFooter()); // using footer from AbstractSAO
 return xml.toString();
 }
 //---------- other methods
}

Fast4J Services

Document Control

Page 78 of 116 New Mexico ASPEN
Online Fast4J Express

To identify this node one has to know the format of the SOAP response provided by the Web
service. In our example the following is the SOAP response we receive:

Once the results in the identified node in the SOAP response are parsed, the
AbstractHTTPUrlService automatically populates all the values in the Map and passes it to it’s
map() method. The map() method must thus be overridden to utilize the contents of the Map to
repopulate the domain objects as follows:

In some cases the results form a webservice may not be a list of domain objects (array of strings
or simple String result), in this case the handleNodes(NodeList theNodes) method will be
overridden to get the complete control on the SOAP result.

AbstractHTTPUrlService provides the flexibility for a subclass to override many of the default
method implementations, such as the way the results are parsed, etc. By default,
AbstractHTTPUrlService uses DOM for XML parsing. The framework is not tied to any particular
implementation of a DOM parser, and the user can always choose one by setting the system
property javax.xml.parsers.DocumentBuilderFactory. Here is an example how one can use
Xerces parser from Apache as the XML parser.

<?Xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
 <CurrentDateTimeResponse
 xmlns="http://MarkItUp.com/WebServices/2006/01/18/TimeZones">
 <CurrentDateTimeResult>dateTime</CurrentDateTimeResult>
 </CurrentDateTimeResponse>
</soap:Body>

public class CurrentDateTimeHTTPService extends AbstractHTTPUrlService {

 @Override
 protected DomainObject map(Map<?, ?> parameters)
 throws CheckedApplicationException {
 DateTimeObject result = new DateTimeObject();
 result.setCurrentDateTime((String) parameters
 .get("CURRENTDATETIMERESULT"));
 return result;

 } //--------- other methods
}

java -D
javax.xml.parsers.DocumentBuilderFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

Contract No. PSC 12-630-4000-0001

5. Fast4J Presentation Features

5.1. Enhanced Session Management

Fast4J provides the several session management utilities to aid in managing all sessions and
their contents in Web applications.

5.1.1 HttpSessionListener

Fast4J’s HttpSessionListener class provides an easy way to retrieve and access all HttpSession
objects in a Web application. The HttpSessionListener
(com.deloitte.common.presentation.sessionmanagement) is an implementation of the
javax.servlet.http.HttpSessionListener interface which maintains references to all sessions for
easy retrieval. All newly created sessions will be added to an application-scoped Map attribute
named “theSessions”. Similarly, the sessions will be removed from the map when they are
destroyed by the container. This provides a convenient way to access the session-scoped data
for any session running within your Web application.

To use HttpSessionListener, configure your web container to enable this listener. This is done
through the web.xml file, as shown below:

<web-app>
…
 <listener>
 <listener-class>
 com.deloitte.common.presentation.sessionmanagement.HttpSessionListener
 </listener-class>
 </listener>
…
</web-app>

Once the Web server is configured to use the session listener, any session-creation event will
result in that session being placed in the application-scoped Map attribute named “theSessions”.
This attribute can easily be retrieved in a JSP as shown below:

<% Map<String, HttpSession> theSessions = (Map<String, HttpSession>)
 application.getAttribute("theSessions"); %>

Note that the application implicit variable added by JSP compilers is of type ServletContext and
contains application-level attributes for the entire container. For a discussion on different web
container scopes, refer to: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Servlets5.html#wp64315

The Map object contains all session objects, keyed by the the session ID of each HttpSession.
Hence, the following retrieves a Set of String objects representing all the current session IDs and
prints them to screen:

<%
Map<String, HttpSession> theSessions = (Map<String, HttpSession>)
 application.getAttribute("theSessions");
Set<String> theIDs = theSessions.keySet();
for(String key:theIDs) {
 out.print(key);
}
%>

The Map values containing references to the actual session objects can similarly be used:

<%
Map<String, HttpSession> theSessions = (Map<String, HttpSession>)

Fast4J Presentation Features

Document Control

Page 80 of 116 New Mexico ASPEN
Online Fast4J Express

 application.getAttribute("theSessions");
Collection<HttpSession> theSessionsCollection = theSessions.values();
for(HttpSession theSession : theSessionsCollection) {
 // do job
}
%>

5.1.2. SessionObject Interface

The SessionObject interface extends the Serializable interface and exposes a single method –
size – which returns a long value representing the object’s size. To easily compute total session
size, ensure that all objects you place on the session implement this interface. This can easily be
enforced through an implementation of HttpSessionAttributeListener that discards attribute
additions and replacements that do not implement SessionObject.

Implementing the SessionObject interface also forces developers to think about the type of
information they are storing in the session, and prevents additions of simple objects (such as
Strings and Numbers) which pollute the session when added directly. Instead, the SessionObject
interfaces enforces that session-scoped objects are be bundled into a container object, for
example Struts ActionForms or a User object and this object can be stored into the session. In
the example below, a User SessionObject is used to encapsulate the user attributes pertinent to
the session. The “size” method is implemented by simply adding the length of the String
attributes present on the object.

Fast4J Presentation Features

Document Control

Page 81 of 116 New Mexico ASPEN
Online Fast4J Express

public class User implements SessionObject {

 private static final long serialVersionUID = 8808618896889628681L;

 private String userId;
 private String firstName;
 private String lastName;

 public String getUserId() {
 return userId;
 }

 public void setUserId(String userId) {
 this.userId = userId;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public long size() {
 return userId.length() + firstName.length() + lastName.length();
 }

}

The total session size can easily be computed if all objects on the session implement the
SessionObject interface. The fragment below shows how to compute total session size by
iterating through all session attributes:

<%
HttpSession theSession = request.getSession(true);
long sum=0;
for(Enumeration<String> names ; theSession.getAttributeNames(); names.hasMoreElements();) {
 SessionObject o = (SessionObject) session.getAttribute(names.nextElement());
 sum+=((SessionObject)o).size();
}
%>

By extending Serializable, the SessionObject interface also forces developers to place
Serializable objects on the session. This is particularly important for session failover to work
correctly in clustered environments. Furthermore, a more accurate (but computationally
expensive) session size can be determined using serialization, assuming every session attribute
is serializable, as shown in the fragment below:

<%
HttpSession theSession = request.getSession(true);
long sum=0;
for(Enumeration<String> names = theSession.getAttributeNames();names.hasMoreElements();) {
 Object o = session.getAttribute(names.nextElement());
 if(o != null && Serializable.class.isAssignableFrom(o.getClass())) {
 ByteArrayOutputStream bytearrayoutputstream =

Fast4J Presentation Features

Document Control

Page 82 of 116 New Mexico ASPEN
Online Fast4J Express

 new ByteArrayOutputStream();
 ObjectOutputStream objectoutputstream =
 new ObjectOutputStream(bytearrayoutputstream);
 objectoutputstream.writeObject(o);
 sum+=bytearrayoutputstream.toByteArray().length;
 }
}
%>

5.2. Pagination

Fast4J provides three classes to aid in providing a paginated view of an Object List. These
objects are:

▪ PagedCollection: A Collection implementation that can break up an

existing collection into “pages” – each page containing a subset of the

original collection.

▪ TwoWayIterator: An interface that extends Java’s ListIterator interface

and adds a current() method capable of retrieving the current element

from the iterator.

▪ PaginationIterator: A default implementation of TwoWayIterator. The

PaginationIterator can be used with a PagedCollection instance to

iterate through the pages within the PagedCollection.

As an example, take a simple List containing 6 String elements:

List<String> elements = new ArrayList<String>();
elements.add("1");
elements.add("3");
elements.add("5");
elements.add("6");
elements.add("4");
elements.add("2");

This List can be used to instantiate a PagedCollection with a page size of 2 as follows:

PagedCollection<String> c = new PagedCollection<String>(elements, 2);

This will result in a Collection which can be visually represented as:

“1”
“3”

“5”
“6”

“4”
“2”

Note that the second argument to the PagedCollection contructor is the page size. If omitted, the
page size defaults to 10.

Paged Collection

Page 0

Page 1

Page 2

Fast4J Presentation Features

Document Control

Page 83 of 116 New Mexico ASPEN
Online Fast4J Express

Pages can be retrieved from the PagedCollection through the getPage() method. The number of
pages in the PagedCollection can be retrieved through the size() method. For example, using the
PagedCollection instantiated above:

c.getPage(0); // Returns a Collection with elements `1`, `3`
c.size(); // Return 3
c.getPage(2); // Returns a Collection with elements `4`, `2`
c.getPage(3); // Throws a Runtime Exception

A TwoWayIterator can be retrieved from a PagedCollection through the “twoWayIterator” method.
This provides a simple way of navigating forwards and backwards through the PagedCollection,
as shown below:

TwoWayIterator<List<String>> j = c.twoWayIterator();
while (j.hasNext()) {
 j.next();
}
j.current();
while (j.hasPrevious()) {
 j.previous();
}

PagedCollections can be used directly within the presentation layer to visually represent a
paginated view of a collection. Take the PagedCollection previously instantiated; to visually
represent a paginated view of the elements in that Collection along with links to navigate between
pages (as shown below):

The following JSP scriptlet is used to render this display. This scriptlet assumes that the
PagedCollection was placed in the user’s session and that a “pageNumber” request argument is
used to control which page to display:

<%
 PagedCollection<String> c = (PagedCollection<String>)
 request.getSession(false).getAttribute("pagedCollection");
 int pageNumber = 0;
 if(request.getParameter("pageNumber") != null) {
 pageNumber = Integer.parseInt(request.getParameter("pageNumber"));
 }
 Collection<String> thePage = c.getPage(pageNumber);

Fast4J Presentation Features

Document Control

Page 84 of 116 New Mexico ASPEN
Online Fast4J Express

 for(String element : thePage) {
%>
 <%=element%>

<%
}
 for(int i=1;i<=c.size();i++) {
%>
 <a href="page.jsp?pageNumber=<%=(i-1)%>">Page <%=i%>
<% }
%>

Fast4J Presentation Features

Document Control

Page 85 of 116 New Mexico ASPEN
Online Fast4J Express

5.3. Custom Tags

Fast4J provides a custom tag capable of printing objects on the session. The DisplayObject (in
com.deloitte.common.presentation.tags) tag must first be configured for use in your web
container. The first configuration step involves creating a tag library descriptor (TLD) for the
DisplayObject tag. The file below shows an example TLD for the DisplayObject tag; this file
should be saved in your web application’s WEB-INF directory:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>display</shortname>
 <uri>http://fast4j.com/tags/display-tag-html</uri>
 <info>Fast4J Display Tag</info>
 <tag>
 <name>display</name>
 <tagclass>com.deloitte.common.presentation.tags.DisplayObject</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

The second configuration step involves modifying your web application descriptor (web.xml) to
point to the TLD defined in the previous step. Following is an example of such a configuration,
assuming the TLD was saved with filename “fast4j.tld”.

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app >
 …
 <taglib>
 <taglib-uri>/WEB-INF/fast4j.tld</taglib-uri>
 <taglib-location>/WEB-INF/fast4j.tld</taglib-location>
 </taglib>
…
</web-app>

Once this configuration is in place, the tag can be used directly in JSP. The tag must first be
imported into the JSP through the taglib directive, as shown below:

<%@ taglib uri="/WEB-INF/fast4j.tld" prefix="fast4j"%>

This tag can be used to display the value of an object’s attribute assuming that value is exposed
through public getters. For example, take the following session-scoped object:

public class User implements SessionObject {

 private static final long serialVersionUID = 8808618896889628681L;

Fast4J Presentation Features

Document Control

Page 86 of 116 New Mexico ASPEN
Online Fast4J Express

 private String firstName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public long size() {
 return userId.length() + firstName.length() + lastName.length();
 }

}

The following JSP fragment creates this object in the session scope and sets the firstName
property to “John”:

<jsp:useBean id="myUser" class="test.User" scope="session">
 <jsp:setProperty name="myUser" property="firstName" value="John"/>
</jsp:useBean>

The DisplayObject tag can be used to display the value of the firstName attribute, as shown
below:

<fast4j:display name="myUser" value="firstName" scope="session"/>

Note that the required parameter name refers to the attribute name with which the object was
stored in the given scope. The “value” parameter refers to the attribute to be shown – a public
getter matching the attribute name must be available. The optional scope parameter (page,
request, session or application) refers to the context in which we find the object. Page-context is
assumed if this parameter is omitted.

The DisplayObject tag can display nested attributes – it can “walk” the object graph to retrieve
attributes from deeply nested related objects. In the example above, the User object has a
nested User object representing the user’s spouse. The spouse’s firstName attribute can be
displayed as follows:

<fast4j:display name="myUser" value="spouse.firstName" scope="session"/>

It is important to note that the DisplayObject will never return a “null” String, which is a typical flaw
of other display tags such as JSP’s getProperty tag when dealing with null objects. DisplayObject
will appropriately return a 0-length String instead of “null” when dealing with such objects.

5.4. AJAX Support

An AJAX (Asynchronous JavaScript and XML) solution can easily be developed using existing
Fast4J constructs. A sample AJAX application that uses Fast4J’s SimpleObject framework is
available at URL: http://fast4j.glbsnet.com/ExpresssAjax/

This section will demonstrate how the sample application uses a combination of Fast4J Objects,
Javascript and XML to provide a rich-client interface. Shown below is a screenshot of the sample
application. Having typed the letter “N” in the United States input field, the “Results” section of
the screen is automatically updated to show all US States that begin with the letter “N”.

Fast4J Presentation Features

Document Control

Page 87 of 116 New Mexico ASPEN
Online Fast4J Express

The first step in launching asynchronous requests as the user types into the input field is to
trigger on “onKeyUp” event for that field. Hence, the “United States” input field is defined as
follows:

<input type="text" id="inputfield1" onkeyup="sendValue1('UnitedStates');">

The “sendValue” JavaScript function is defined as:

function sendValue1(simpleObject) {
 var req = newXMLHttpRequest();
 req.onreadystatechange = getReadyStateHandler(req, updateDom);
 req.open("POST", "action.do", true);
 req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 req.send("so="+simpleObject+"&pattern="+inputfield1.value);
}

This JavaScript function creates an XMLHttpRequest, which is the mechanism by which the client
exchanges data asynchronously with the web server. In our example, the POST request is sent
to a servlet mapped by the URL “action.do”, with two request parameters: so being the type of
simple object to retrieve (in this case, United States), and pattern being the value entered in the
input field. Once the request completes, the XMLHttpRequest function updateDom() will be
called.

Note that the newXMLHttpRequest() and getReadyStateHandler() JavaScript functions are
boilerplate functions necessary to support XMLHttpRequest across browsers and handle the XML
response accurately. These functions are part of IBM’s AJAX library, which can be found at
http://www-128.ibm.com/developerworks/library/j-ajax1/

Important excerpts from the servlet which handles the POST request are shown below:

 public class Action extends HttpServlet {

 private static final long serialVersionUID = -6692856771740136794L;

 public void init() throws ServletException {
 try {
 UnitedStates.getInstance().loadValues();
 UnitedStatesPossessions.getInstance().loadValues();

 } catch (CheckedApplicationException e) {
 throw new ServletException(e);
 }

http://www-128.ibm.com/developerworks/library/j-ajax1/

Fast4J Presentation Features

Document Control

Page 88 of 116 New Mexico ASPEN
Online Fast4J Express

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {
 res.setContentType("text/xml");
 res.getWriter().write(
 getXML(req.getParameter("so"), req.getParameter("pattern")));
 }

 private String getXML(String filterName, String pattern)
 throws ServletException {
 Collection<SimpleObject> theResults = getSimpleObjects(filterName,
 pattern);
 StringBuffer xml = new StringBuffer();
 xml.append("<?xml version=\"1.0\"?>\n");
 xml.append("<simpleobject>\n");
 for (SimpleObject theObject : theResults) {
 xml.append("<value>" + theObject.getValue() + "</value>\n");
 }
 xml.append("</simpleobject>\n");
 return xml.toString();
 }

 private Collection<SimpleObject> getSimpleObjects(String filterName,
 String pattern) throws ServletException {
 Collection<SimpleObject> theResults = new ArrayList<SimpleObject>();

 theResults.addAll(SimpleObjectAccessor.getInstance().getAll(
 new SimpleObjectFilter(filterName, pattern, false)));

 return theResults;
 }
}

In the servlet’s initialization method, the United States values are loaded into the SimpleObject
framework. Upon a POST request, the servlet sets the content type as “text/xml” and returns an
XML document that contains the names of all US States that begin with the pattern entered. The
XML document is generated by first retrieving a Collection of SimpleObject that match the pattern
entered – this is done using a SimpleObjectFilter. The getXML() method iterates through this
Collection and builds an XML document containing the values of all objects in the Collection. For
example, the XML document returned when the pattern “N” is entered is as follows:

<simpleobject>

<value>Nebraska</value>
<value>Nevada</value>
<value>New Hampshire</value>
<value>New Jersey</value>
<value>New Mexico</value>
<value>New York</value>
<value>North Carolina</value>
<value>North Dakota</value>

</simpleobject>

Finally, the updateDom() JavaScript function which receives the XML document and updates the
page’s HTML dynamically is shown below:

function updateDom(XML) {
 var contents = document.getElementById("displayresults");
 contents.innerHTML = "";
 var values = XML.getElementsByTagName("value");
 for (var I = 0 ; I < values.length ; I++) {
 var listItem = document.createElement("li");
 listItem.appendChild(document.createTextNode(values[I].firstChild.text));
 contents.appendChild(listItem);

Fast4J Presentation Features

Document Control

Page 89 of 116 New Mexico ASPEN
Online Fast4J Express

 }
}

The function first retrieves the displayresults element (which in this case is a table cell) and clears
out any of its HTML content. The function then iterates over the XML document and builds a list
item with the value retrieved from the XML; the list item is then added to the contents of the
displayresults element.

5.5. Integration with Web Frameworks

Fast4J can be used with any web framework – in this section, integration with Apache Struts will
be discussed. Apache Struts is the leading Model-View-Controller presentation framework. It is
available at: http://struts.apache.org/

Fast4J features like population and conversion can be very useful in populating your domain
objects from Struts ActionForm objects (and vice-versa). The following example will demonstrate
this functionality.

Consider a simple form with a user ID and a password – this could represent a login screen, for
example. The Struts ActionForm for this screen can easily be implemented as shown below.

public class LoginForm extends ActionForm {

 private static final long serialVersionUID = -2385535811724106296L;

 private String userId;
 private String password;

 public String getUserId() {
 return userId;
 }

 public void setUserId(String userId) {
 this.userId = userId;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

}

The corresponding HTML source is also very simple, as shown below. Note that for simplicity,
the web application descriptor (web.xml) and struts configuration file (struts-config.xml) was
omitted.

<html:html>
 <body>
 <html:form action="/login">
 <html:text property="userId"/>

 <html:password property="password"/>
 <html:submit/>
 </html:form>
 </body>
</html:html>

The intent is to populate a User domain object with the information from the form. The User
domain object is shown below. Note that the “password” property is defined with type Password,
which is a Fast4J DomainObjectAttribute capable of storing a hashed version of a String.

Fast4J Presentation Features

Document Control

Page 90 of 116 New Mexico ASPEN
Online Fast4J Express

public class User extends AbstractDomainObject {

 private static final long serialVersionUID = 8808618896889628681L;

 private String userId;
 private String password;

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getUserId() {
 return userId;
 }

 public void setUserId(String userId) {
 this.userId = userId;
 }

}

The Action class is responsible for instantiating and populating the User domain object. It does
so using Fast4J’s ObjectPopulator and DefaultPropertyPopulator as shown below. Note that the
DefaultPropertyPopulator does not handle String-to-Password conversion by default. An
additional Converter must be added in order to have the population of the Password
DomainObjectAttribute to be populated from the String ActionForm attribute. This very simple
converter is implemented below in the PasswordConverter inner class.

public class LoginAction extends Action {

 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response) {
 try {
 User theUser = new User();
 DefaultPropertyPopulator thePropertyPopulator = new
 DefaultPropertyPopulator();

 thePropertyPopulator.addConverter(new PasswordConverter());

 ObjectPopulator thePopulator = new ObjectPopulator(form, theUser,
 thePropertyPopulator);

 thePopulator.execute();
 return mapping.findForward("success");
 } catch (CheckedApplicationException e) {
 return mapping.findForward("failure");
 }
 }

 class PasswordConverter extends AbstractConverter {
 public boolean accepts(Object o, Class<?> c) {
 return o.getClass().equals(String.class)
 && c.equals(Password.class);
 }

 public Object convert(Object o) {
 return new Password((String) o);
 }

 public Class<?> getReturnType() {

Fast4J Presentation Features

Document Control

Page 91 of 116 New Mexico ASPEN
Online Fast4J Express

 return Password.class;
 }
 }

}

Contract No. PSC 12-630-4000-0001

6. Code Generation

The Fast4J framework provides code generation facilities, which are enabled via a plug-in that
can be downloaded and installed into the Eclipse IDE. This plug-in can generate all domain
objects, DAOs, a standard services layer, and a fully-functioning web application that allows one
to browse the data in the database and manipulate the content via create, update, and delete
operations. This code is generated by pointing the plug-in at an existing data model residing
inside a supported RDBMS.

6.1. Downloading the Plug-In

Before downloading the Plug-in, please ensure that your version of Eclipse is 3.1.1 or higher.
Eclipse can be downloaded at: http://www.eclipse.org/downloads/
The Plug-in has not been tested in other derivatives of Eclipse, such as Websphere Integration
Developer. However, if should be compatible with most IDEs based on Eclipse 3.1.1+.

The Plug-in can be downloaded using Eclipse’s Software Update component. To download and
install the plug-in in Eclipse, follow these steps:

Launch the Eclipse IDE. Click on “Help”, then “Software Updates” and finally “Find and Install…”
The following window will open.

Select “Search for new Features to install” and click “Next” The following window will open.

http://www.eclipse.org/downloads/

Code Generation

Documentation – Version 1.0 93

Click on “New Remote Site…” (Note: the list of sites shown in the window above may not exactly
match your list of sites). The following window will open.

Enter the following parameters and click OK:

Name: Fast4J/ITASCA Eclipse Plug-in
URL: http://fast4j.glbsnet.com/ProjectWebsite/Tools

You are now returned to the following window with the new update site you configured, listed and
selected. Please ensure that only the “Fast4J/ITASCA Eclipse Plug-in” site is selected, as shown
below. Click Finish.

Code Generation

Documentation – Version 1.0 94

Eclipse will search the site for a few seconds and the following window will open:

Select the “Fast4J/ITASCA Plug-in” feature and click “Next”. The following license agreement
window will open.

Code Generation

Documentation – Version 1.0 95

Select “I accept the terms in the license agreement” and click “Next”. The following window will
open. (Note: the version number of the Plug-in feature shown in the window above may not
match what is shown in your window at installation time)

Click “Finish”. The following window will now open. Click “Install All” to complete the installation.
(Note: the version number of the Plug-in feature shown in the windows below and above may not
match what is shown in your window at installation time)

Code Generation

Documentation – Version 1.0 96

You may be asked to restart the workbench for changes to take effect, as shown below. Click
“Yes”.

6.2. Databases Supported

The Eclipse Plug-in has been tested against the following databases:
▪ Oracle 9i, 10g, 11g R2
▪ SQL Server 2005
▪ DB2 UDB
▪ Hypersonic DB 1.8.0
▪ Genereted using the “Generic Database” option

o MySQL 5.X
o PostgreSQL 8.X

In order to use the Plug-in against a supported database, you must have a proper JDBC driver
provided by the database’s vendor.

6.3. Configuring the Plug-in

The following steps outline how to use the Eclipse plug-in to generate Fast4J domain objects,
DAOs, and sample web application based on an existing data model. For this example, consider
the following data model:

Code Generation

Documentation – Version 1.0 97

Note the 1-to-N relationship between Customer and Address. Also note that the primary keys
were defined as NUMERIC(17) to properly persist the Fast4J-generated OID objects of size 17.

Before using the Plug-in, you must have an open Java project setup within your Eclipse IDE. For
more information on how to create a Java project, refer to the Eclipse documentation.

Click on “File”, then “New”, then “Other”. The following window will open:

Note the new wizard folder – “Fast4J/ITASCA Wizards”. Open this folder by clicking the (+) next
to it. Select “New Fast4J/ITASCA File” and click “Next”. The following window will open:

Code Generation

Documentation – Version 1.0 98

Here is an explanation of the different fields on this window:

On the Basic tab:

Language Selection (Fast4J/ITASCA): Select “Fast4J” to generate Java components
compliant with the Fast4J libraries. Select “ITASCA” to generate C# components
compliant with the ITASCA .Net framework.

Project Source: Click “Browse” and select the Java Project and Source Folder where the
generated code will be created.

File Type:

▪ Domain and Data Access Object from Database Table: Code-generates
objects based on an existing data model. This is the most useful file type.

▪ Sample Domain Object: Code-generates the stub for a domain object.
▪ Sample Data Access Object: Code-generates the stub for a data access object.
▪ Fast4J Struts Web Application: Code-generates a sample struts-web

application including ant build that allows one to browse the data in the database
and manipulate the content via create, update, and delete operations

Code Generation

Documentation – Version 1.0 99

Package Names: Based on the file type option you selected, you will have to input some
of the following information:

Domain Object Package: The Java Package or .Net Namespace in which domain
objects will be generated.

Data Access Object Package: The Java Package or .Net Namespace in which data
access objects will be generated.

Code Generation

Documentation – Version 1.0 100

Base Presentation Package: The Java Package or .Net Namespace in which servlets &
action classes will be generated.

Class Name (only applies to the “sample” file types): The name of the class file to be
generated. Enter the name without the package name and without the “.java” or “.cs”
extensions (e.g. “Customer”) Options: Most of these options expect the “Target Java
Environment selection” is available only for the “Domain and Data Access Object from
Database Table” and “Fast4J Struts Web Application” file types. Code will be generated
based on these options while creating the Domain & Data Access Objects.

Choose your Target Java Environment: Code will be generated based on the Java
Environment type selected.

Don’t prefix the table names with schema qualifier: If this option is checked, the
Queries at Data Access Objects are generated with out prefixing schema name to the
table names.

Do not generate validations for Nullable columns: If this option is checked, the
validation code will be generated only for the Non-Nullable columns at Database in the
Domain Objects.

Use Mapper Framework in DAO: If this option is checked, an XML file
(PropertyColumnMapper.xml) will be created and used at Data Access Objects to map
the Domain Object attributes to Data base Table attributes.

Web Application Details: Code will be generated for a sample struts web application
based on the inputs keyed.

Web Application Name: The Web Application folder in which web.xml and jsp files will
be generated

Deploy to Tomcat: If this option is checked, the war file will be deployed to Tomcat when
ant is executed.

Tomcat Home: The Tomcat root path in which Tomcat has been installed.

Load settings from file / Save settings to file: After inputting all parameters on this
page (and possibly on the next page), you can click “Save settings to file” to save all
information in a text file. This information can be loaded by clicking “Load settings from
file” and selecting the previously saved file.

On the Advanced tab:

Advanced Settings: By default, all Fast4J code is packaged under the
“com.deloitte.common” package. If you want to re-package it to client specific
namespace, for example, to the “gov.client.common” package, enter “gov.client.common”
in this field.

Below are screenshots of the Basic and Advanced tabs if your code-generation requirements
were as follows:

▪ Generate Fast4J-compliant source code in an existing Java Project named “MyProject”
with source folder “src”.

▪ Generate components using an existing database schema.
▪ DomainObjects should be created in package “gov.client.domain”.
▪ Data Access Objects should be created in package “gov.client.persistence”.
▪ The Fast4J framework was refactored into a “gov.client.common” package structure.

Code Generation

Documentation – Version 1.0 101

Code Generation

Documentation – Version 1.0 102

If you selected the “Domain and Data Access Object from Database Table”, click “Next” and the
window shown below will open. Otherwise, click “Finish” and your components will be generated.

Here is an explanation of the different fields on this window:

JDBC JAR Files: Click “Browse” to select the JDBC JAR file(s) for the database that
contains your data model. Most databases require selection of a single JAR file (for
example, “ojdbc14.jar” for Oracle). Some databases (e.g. DB2) require the selection of
the JAR file (db2jcc.jar) and license file (db2jcc_license_cu.jar). If you need to select
multiple JAR files, use the CTRL or SHIFT keys to select multiple files in the “Browse”
dialog.

Database: Select the type of database that contains your data model. If your database is
not listed, select “Generic” and contact the Fast4J team for further assistance.

Host Name: The machine name where the database is running.

Port: The port used to communicate to the Database Server.

Datasource Name: The database/instance name to connect to.

URL: Once you select the database type, the URL field gets populated with the URL
format for the given database vendor. Follow this format to enter a correct URL for your
database.

User ID: The user ID to log on to your database.

Password: The password associated with the user to log on to your database (leave
blank if no password is defined).

Check box to generate sample client code: Check this box to generate the sample
web application that performs sample CRUD operations on the generated domain
objects/DAOs. By checking this box, service classes that can populate a deeply nested
object graph are also generated (see step 10 below).

Code Generation

Documentation – Version 1.0 103

After filling in the fields above, the “Test Connection” button should appear, as show below:

Click “Test Connection” to ensure that all your database parameters are correct. If you do not get
a “Connection Successful” message, please fix your database parameters and repeat the
connection test until successful. Once successful, the following field becomes available:

Schema: Select the database schema containing your data model. The database user
you entered above should have read access to all of the tables in the data model for
which you wish to code-generate.

After completing the database information, click “Next”. The following window listing all tables
should open (The tables listed in the window below are for illustration purposes only. The tables
listed should match the tables found in your schema).

Code Generation

Documentation – Version 1.0 104

Here is an explanation of the different fields on this window:

Table: Click the “Select All Tables” checkbox to select/deselect all tables. If you wish to
code-generate components for only individual tables, click the checkbox next to the table
names you want to generate. At least one table must be selected.

Key: If your tables have primary keys defined correctly in the database, this field should
be automatically populated. If it is not populated, select the column name used to store
the primary key for this table.

Class: The class name that will be used for the domain object class for this table. The
Data Access Object class will use this class name as well, with “DAO” appended. Any
sample usage classes will use this class name with “Client” appended while any service
classes will append “Service” to this class name.

DO/DAO Checkboxes: Check/uncheck these boxes if you do not want to code-generate
both DomainObjects and DataAccessObjects for this table. By default both
DomainObjects and DataAccessObjects are code-generated for any selected table.

After selecting the desired tables, either click “Finish” to generate the components, or click “Next”
to define relationships between the tables. If you click “Next”, the window shown below will open.

Code Generation

Documentation – Version 1.0 105

This window allows you to define relationships (1-to-1 or 1-to-N) between tables. By specifying
these relationships, the code generation engine can create the appropriate composition
relationships between the domain objects, and also create service objects that can populate the
entire object graph. Here is an explanation of the different fields on this window:

Parent: Select the table that is the parent for this relationship. In our example above, the
parent table is “CUSTOMER”.

Parent Key: Select the parent table’s column referenced by the child foreign key. In our
example above, the parent’s key column is “CUSTOMER_ID”.

Type: Select 1-to-1 or 1-to-N. In our example, the relationship is 1-N.

Child: Select the table that is the child for this relationship. In our example above, the
child table is “ADDRESS”.

Child Key: Select the child table’s column that references the parent key. In our
example above, the child’s key column is “CUSTOMER_ID”.

Add: Click “Add” to add this relationship into the wizard. You must click “Add” once
the relationship is defined or it will not be used.

After defining the desired relationships, click “Finish” to generate the components. In our
example, the following components would be generated:

Class/Item Names Package Description

Address
Customer

gov.client.domain DomainObject implementations

AddressDAO
CustomerDAO

gov.client.persistence
DataAccessObject
implemetnations

PropertyColumnMapper.xml Project root
Maps the DomainObject
attributes to Database Table
attributes

AddressService
CustomerService

gov.client.domain.service

Service classes used for
maniuplatin the DomainObjects.
Can be used to populate the
Customer-Address object graph.

Code Generation

Documentation – Version 1.0 106

AddressForm
CustomerForm

gov.client.presentation.actionforms Struts ActionForms

AddressAction
CustomerAction

gov.client.presentation.actions Struts Actions

ConnectionFactory
PaginationAction

InitServlets

Various
Other supporting classes for the
web application

JSPs
Configuration files

Deployment descriptors
Tag Libraries
Style sheets

Images
HTML files

NA
Other web content needed for a
functional thin-client applications

Build.xml NA

Working ant build file for
automatically compiling,
packaging, and deploying the
web application

The result is a fully-functional web application which allows one to create, update, and delete
customers and addresses in the database.

6.4. Preserving Business Logic

The Eclipse plug-in does not support round-trip code generation. Every time the plug-in is used
to code-generate domain objects and data access objects, modifications made to the previous
components are not preserved and must be reintroduced into the newly generated components.

This is particularly important when dealing with an evolving data model. As the data model
changes, it is important to keep the domain objects and DAOs in-sync with the data model. The
easiest way to do this is to use the plug-in to generate fresh versions of these components. If
business logic was developed in the domain object in between code-generations, this business
logic will be lost upon the latest code generation.

The simplest strategy to employ in order to preserve business logic in the domain objects is to
make use of inheritance. More specifically, the code-generated domain object should act as the
superclass and your specialized business logic should be encapsulated in a subclass. The
following diagram depicts this approach:

 Specialized Domain

 Layer

 Code Generated

 Domain Layer

 Fast4J Framework Layer

AbstractDomainObject

+getters/setters()

Code-Generated Domain Object

+specialized validation()

+specialized business logic()

Specialized Domain Object

Layering the domain objects as shown above allows you to regenerate the domain object without
affecting the specialized class – assuming the getters/setters of the code-generated superclass
used in the subclass remain consistent.

Code Generation

Documentation – Version 1.0 107

Keeping Data Access Object modifications through multiple code-generations is not as simple
and requires careful manual merging of code modifications

7. Integrating Fast4J with EJB

Enterprise JavaBeans provides some powerful constructs for building advanced, distributed
applications. While Fast4J is not dependant upon EJB technology, Fast4J does integrate well into
EJB environments. In this chapter, we will discuss the common usage patterns for EJB
applications built using the Fast4J framework. It should be noted that all examples provided in
this chapter are based on the EJB 3.0 standard. Fast4J also supports EJB 2.1, in which case the
following usage patterns are still relevant. Note that all examples were deployed within the
Glassfish server and that your deployment may be slightly different for your given application
server.

7.1. DAO Registration in EJB

It is inevitable that a ConnectionFactory is required to register a DAO. The ConnectionFactory
may use the Datasource by lookup through the JNDI name which is configured in the container.
For more information on creating the ConnectionFactory please refer to the section 3.3.2

The standard approach of registering the DAOs is in a Startup Servlet, but this may not work in all
circumstances, particularly in EJB environments. Because many container environments utilize
multiple JVMs or have more complex ClassLoader hierarchies, alternative strategies for the static
registration of DAOs (not to mention other static resources) may be necessary. Some of the
reasons alternative approaches must be used include:

➢ Application may have only EJB Module
➢ Application may not share the same JVM for both EJB and WEB Module
➢ Some applications may have a restriction to access resources like DAO’s and

DataSources to only EJB Module.
In these scenarios it is recommended to implement a wrapper class which will register the DAO’S
in the static block of this class. Later, use this class to fetch the DAO’s in all EJB implementation
classes.

The following example shows you to implement the wrapper class for registering the DAO’s.

public final class Fast4JSampleEJBDAOFactory{
 private static final Logger log =
 Logger.getLogger(Fast4JSampleEJBDAOFactory.class.getName());
 static{
 log.info("*** Registering DAO's ***");
 DefaultDAOFactory.getInstance().register(Customer.class,
 SampleEJBConnectionFactory.getInstance(), new CustomerDAO());
 // Register other DAO's here ...
 }

 private Fast4JSampleEJBDAOFactory(){

 }

 public static DefaultDAOFactory getInstance(){
 return DefaultDAOFactory.getInstance();
 }
}

7.2. Stateless Session Beans

It is very common for applications to expose a session façade implemented as a stateless
session bean (SLSB) as the entry-point into the business layer. Given the frequent use of SLSBs
in applications, it is critical for Fast4J to integrate seamlessly within SLSBs. This section will
provide working examples of using Fast4J within a SLSB.

 FAST4J Online

Integrating Fast4J with EJB

Page 108 of 116 New Mexico ISD2R
Online Fast4J Express

An example of a SLSB remote interface is shown below, which exposes methods “addCustomer”
and “getCustomers”. .

@Remote
public interface CustomerRemote {

 public void addCustomer(Customer theObject) throws CheckedApplicationException;

 public Collection<Customer> getCustomers(Map<?,?> paramMap) throws
 CheckedApplicationException;
}

The remote interface methods implemented in the SLSB can interact with all the usual Fast4J
components including DomainObjects, DataAccessObjects, Commands, etc. The following
example shows the implementation details of getCustomers and addCustomer methods.

/**
 * Session Bean implementation class CustomerBean
 */
@Stateless (mappedName="CustomerBeanSL") // JNDI Name
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
@TransactionManagement(TransactionManagementType.CONTAINER)
public class CustomerSLSBean implements CustomerRemote{

 private final DefaultDAOFactory daoFactory = Fast4JSampleEJBDAOFactory.getInstance();
 private DataAccessObject<Customer> theDAO = null;

 public CustomerSLSBean() {
 theDAO = daoFactory.createFor(Customer.class);
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Collection<Customer> getCustomers(Map<?,?> paramMap)
 throws CheckedApplicationException {
 return theDAO.getAll(paramMap);
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void addCustomer(Customer theObject) throws CheckedApplicationException {
 CreateObjectCommand<Customer> createCommand = new
 CreateObjectCommand<Customer>(theObject);
 createCommand.execute();
 }

}

Since the addCustomer method is defined within the context of the SLSB, it inherits the
transactional attributes for that bean. As such, the call to CreateObjectCommand’s execute()
method only logically commits the record to the database. The actual commit is performed by the
container’s transaction manager; hence you can’t use the Fast4J TransactionCommandManager
as this class executes the commands followed by commit. Further discussion on Fast4J
transaction management in EJB environments can be found in section 7.4.

Once the SLSB is implemented and deployed in Application Server, it can be accessed in the
same JVM (through SLSB Local interface) where it is deployed or in another JVM (through SLSB
Remote interface).

EJB3.0 makes the bean lookup easy, as there is no need to generate client side stubs to access
a bean. But the client program requires certain jars (appserv-admin.jar, appserv-deployment-
client.jar, appserv-ext.jar, appserv-rt.jar and javaee.jar) to be available in its classpath.

 FAST4J Online

Integrating Fast4J with EJB

Page 109 of 116 New Mexico ISD2R
Online Fast4J Express

 The following example shows the details of accessing the SLSB through a stand-alone java
program.

public class StatelessSessionBeanClient {

 private static final Logger log = Logger.getLogger(StatelessSessionBeanClient.class.getName());
 private static Context ctx = null;

 static{
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "com.sun.enterprise.naming.SerialInitContextFactory");
 props.setProperty("java.naming.factory.url.pkgs",
 "com.sun.enterprise.naming");
 props.setProperty("java.naming.factory.state",
 "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl");

 // optional. Defaults to localhost. Only needed if web server/Client is running
 // on a different host than the appserver
 props.setProperty("org.omg.CORBA.ORBInitialHost", "localhost");
 // optional. Defaults to 3700. Only needed if target orb port is not 3700.
 props.setProperty("org.omg.CORBA.ORBInitialPort", "3700");

 try {
 ctx = new InitialContext(props);
 } catch (NamingException e) {
 e.printStackTrace();
 throw new UncheckedApplicationException(StatelessSessionBeanClient.class,e);
 }
 }

 public static void main(String args[]) throws CheckedApplicationException{

 CustomerRemote customerBean = null;
 try {
 // Fetch the CustomerRemote
 customerBean = (CustomerRemote) ctx.lookup("CustomerBeanSL");
 Customer customer = new Customer();
 customer.setFirstName("Fast4J");
 customer.setLastName("EJB");

 // Adding a Customer
 customerBean.addCustomer(customer);

 // Fetch the Customers
 Collection<Customer> customerList =
 customerBean.getCustomers(Collections.EMPTY_MAP);
 for(Customer cust:customerList){
 log.info("Customer [ID = "+cust.getID()+", " +
 "FIRST NAME = "+cust.getFirstName()+", " +
 "LAST NAME = "+cust.getLastName()+"] ");
 } // END for
 } catch (NamingException e) {
 e.printStackTrace();
 throw new UncheckedApplicationException
 (StatelessSessionBeanClient.class,
 "Unable to initialize the CustomerBean Remote Object",e);
 }
 }
}

Here is the output of the above example:

 FAST4J Online

Integrating Fast4J with EJB

Page 110 of 116 New Mexico ISD2R
Online Fast4J Express

7.3. Message-Driven Beans

The Java Message Service (JMS) is an API for Java messaging clients. For information on JMS
please refer the link http://java.sun.com/products/jms/tutorial/1_3_1-
fcs/doc/jms_tutorialTOC.html.

Message-driven beans (MDB) are often used in applications requiring asynchronous processing
of business events. MDBs provide the same transaction demarcation capabilities as the SLSBs
and can also make calls to Fast4J components as demonstrated below.

The following example assumes the point-to-point model, and requires setting up a destination
queue with a QueueConnectionFactory in JMS. This section shows how to implement an MDB
with EJB 3.0. In this example, a Customer domain object is fetched from the message and is
persisted to the database using the Fast4J persistence framework.

@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue")
 // Desitnation type is a Queue
 },
 mappedName = "jms/F4J_EJB_SAMPLE_QueueDest") // Destination Queue JNDI name

public class CustomerMDB implements MessageListener {
 @Resource
 private MessageDrivenContext mdc;
 private static final Logger log = Logger.getLogger(CustomerMDB.class.getName());
 public CustomerMDB() {
 // Usually The DAO’s registration should be happened at the time of server startup. This is only for
an example.
 DefaultDAOFactory.register(Customer.class, SampleEJBConnectionFactory.getInstance(), new
CustomerDAO());
 }

 /**
 * @see MessageListener#onMessage(Message)
 */
 public void onMessage(Message message) {
 log.info("*************** Message Received *********************");
 try {
 ObjectMessage msg = (ObjectMessage) message;
 Customer customer = (Customer) msg.getObject();
 //performs only logical commits.
 DefaultDAOFactory.getInstance().createFor(Customer.class).add(customer);
 } catch (JMSException e) {
 e.printStackTrace();
 log.info("JMSException Occured while processing the message");
 } catch (CheckedApplicationException e) {
 e.printStackTrace();
 log.info("CheckedApplicationException Occured while processing the message");
 }
 log.info("*************** Message Processed *********************");
 }
}

When a message arrives, the EJB container calls the onMessage() method of the message-
driven bean to process the message. The onMessage() method contains the business logic and
handles the processing of the message in accordance with the application’s business logic. It can

Customer [ID = 12416976133650012, FIRST NAME = Fast4J, LAST NAME = EJB]

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html
http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

 FAST4J Online

Integrating Fast4J with EJB

Page 111 of 116 New Mexico ISD2R
Online Fast4J Express

call helper methods, or invoke a session bean to process the information in the message or it can
call Fast4J framework components.

The following exaample shows the details of accessing the MDB through a stand alone java
program.

public class MDBClient {

 private static Context ctx = null;

 private static final Logger log = Logger.getLogger(MDBClient.class.getName());

 static{
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "com.sun.enterprise.naming.SerialInitContextFactory");
 props.setProperty("java.naming.factory.url.pkgs",
 "com.sun.enterprise.naming");
 props.setProperty("java.naming.factory.state",
 "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl");

 // optional. Defaults to localhost. Only needed if web server/Client is running
 // on a different host than the appserver
 props.setProperty("org.omg.CORBA.ORBInitialHost", "localhost");
 // optional. Defaults to 3700. Only needed if target orb port is not 3700.
 props.setProperty("org.omg.CORBA.ORBInitialPort", "3700");

 try {
 ctx = new InitialContext(props);
 } catch (NamingException e) {
 e.printStackTrace();
 throw new UncheckedApplicationException(MDBClient.class,e);
 }
 }

 public static void main(String args[]){

 // Queue queue = (Queue) ctx.lookup("jms/Queue");
 QueueConnectionFactory factory = null;
 Queue queue = null;
 QueueConnection connection = null;
 QueueSession session = null;
 QueueSender sender = null;
 try {

 // Get the ConnectionFactory
 factory = (QueueConnectionFactory)
 ctx.lookup("jms/F4J_EJB_SAMPLE_ConnectionFactory");
 // Create the QueueConnection with the username & password
 connection = factory.createQueueConnection("f4jejbsample","f4jejbsample");
 // Creating non-transactional QueueSession Object
 session = connection.createQueueSession(false,
 QueueSession.AUTO_ACKNOWLEDGE);
 // Lookup for the Queue with the Queue Destination JNDI
 queue = (Queue) ctx.lookup("jms/F4J_EJB_SAMPLE_QueueDest");
 sender = session.createSender(queue);
 Customer customer = new Customer();
 customer.setFirstName("MDB Customer");
 customer.setLastName("MDB Customer");
 ObjectMessage msg = session.createObjectMessage();
 msg.setObject(customer);
 sender.send(msg);
 } catch (NamingException e) {

 FAST4J Online

Integrating Fast4J with EJB

Page 112 of 116 New Mexico ISD2R
Online Fast4J Express

 log.warning("NamingException Occured: "+e.getMessage());
 e.printStackTrace();
 } catch (JMSException e) {
 log.warning("JMSException Occured: "+e.getMessage());
 e.printStackTrace();
 }finally{
 try{
 sender.close();
 session.close();
 connection.close();
 }catch(Exception e){
 log.warning("Exception Occured: "+e.getMessage());
 e.printStackTrace();
 }
 }

 }

}

7.4. Transaction Management

The Transactions can be managed in SLSB’s in one of two ways. Either the Fast4J
PersistenceCommandManager can be used or EJB Container transaction management can be
used, but not both. Although the Fast4J framework provides simple single-database transaction
management through the PersistenceCommandManager, more complex transaction
management involving several transactional resources should be left to the application server.
The EJB specification provides near-transparent transaction management which has promoted
the use of stateless session beans as session facade entry points into the middle tier.

For a summary of EJB Container transaction management please refer to
http://java.sun.com/javaee/5/docs/tutorial/doc/bncij.html

7.4.2. Using Container transaction management in SLSB

As shown in section 7.2, SLSBs can call Fast4J components directly and propagate the bean’s
transaction state. Note that the transaction management in the example was specified as
“Container” and the transactional attribute was specified as “Required”. This specifies that the
component utilizes container-managed transactions (CMT) and a new transaction is created
before invoking the method if a transaction does not already exist. EJB also supports bean-
managed transactions (BMT) wherein all details of transactional support are left up to the
developer. In most cases BMT is not recommended, largly because BMT transactions cannot
propagate between EJBs.

By using EJB transaction demarcation, all Fast4J persistence components may have completed
their operations but their changes are not actually committed until the end of the transaction. In
this case, the transaction is not ended and committed until the end of the EJB method. When the
end of the method is reached, the container’s transaction manager will perform commits across
all transactional resources utilized within the method. In the case of exceptions thrown from a
remote method, the container decides to rollback the transaction under specific circumstances.

For illustrative purposes, consider a modified version of the addCustomer() method from section
7.2:

/**
 * Session Bean implementation class CustomerTransSLSBean
 */
@Stateless(mappedName = "CustomerContainerTransSLSBean")
@TransactionAttribute(TransactionAttributeType.SUPPORTS)

http://java.sun.com/javaee/5/docs/tutorial/doc/bncij.html

 FAST4J Online

Integrating Fast4J with EJB

Page 113 of 116 New Mexico ISD2R
Online Fast4J Express

@TransactionManagement(TransactionManagementType.CONTAINER)
@ApplicationException(rollback=true)
public class CustomerContainerTransSLSBean implements CustomerLocal, CustomerRemote {

 private final DefaultDAOFactory daoFactory = Fast4JSampleEJBDAOFactory.getInstance();
 private static final Logger log = Logger.getLogger(CustomerMDB.class.getName());

 public CustomerContainerTransSLSBean() {
 }

 public Collection<Customer> getCustomers(Map<?,?> paramMap) throws CheckedApplicationException
{
 return daoFactory.createFor(Customer.class).getAll(paramMap);
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void addCustomer(Customer theObject) throws CheckedApplicationException {
 log.info("CustomerTransSLSBean::addCustomer() method invoked");
 CreateObjectCommand<Customer> createCommand = new
 CreateObjectCommand<Customer>(theObject);
 // This will logically commits the Customer Object
 createCommand.execute();

 Customer invalidObject = new Customer();
 CreateObjectCommand<Customer> invalidNewObjectCommand = new
 CreateObjectCommand<Customer>(invalidObject);
 // Issue an invalid insert
 // Forget to set the name attribute which is not nullable.
 // throws a Exception
 try{
 invalidNewObjectCommand.execute();
 }catch(CheckedApplicationException e){
 throw new CheckedApplicationException(this.getClass(),
 "Customer Name is Required, all transactions are rollbacked",e);
 }

 // the below will never get executed.
 log.info("CustomerTransSLSBean::addCustomer() completed execution");

 }

}

In the example above, although the first call to CreateObjectCommand’s execute() method
completes successfully and logically commits, the second call fails on a non-nullable column.
Without container-managed transaction demarcation, the first call would have resulted in a row
being committed to the database. However, because this method is running within the context of
a transaction (specified using the “Required” transaction attribute), the whole transaction is rolled
back because of the failure when trying to insert the second object. The above example can also
be implemented by using Fast4J CommandManager Class which will executes the frameworks
persistence commands in sequential order but not deal with the transactions.

Below is an example of using CommandManager in the above code.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void addCustomer(Customer theObject) throws CheckedApplicationException {

 CreateObjectCommand<Customer> createCommand = new
 CreateObjectCommand<Customer>(theObject);
 // Creating a CreateCommand which invalid Customer (no firstname)
 Customer invalidObject = new Customer();
 CreateObjectCommand<Customer> invalidNewObjectCommand = new

 FAST4J Online

Integrating Fast4J with EJB

Page 114 of 116 New Mexico ISD2R
Online Fast4J Express

 CreateObjectCommand<Customer>(invalidObject);

 CommandList cmdList= new CommandList();
 cmdList.add(createCommand);
 cmdList.add(invalidNewObjectCommand);

 CommandManager cmdManager = new CommandManager();
 try{
 cmdManager.perform(cmdList);
 }catch(CheckedApplicationException e){
 throw new CheckedApplicationException(this.getClass(),
 "Exception occured while executing the commands, " +
 "all transactions are rollbacked",e);
 }
 }

The following example shows the details of client code to invoke the above
CustomerTransactionSLSB.

public class StatelessSessionBeanTransactionClient {

 private static Context ctx = null;
 static{
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "com.sun.enterprise.naming.SerialInitContextFactory");
 props.setProperty("java.naming.factory.url.pkgs",
 "com.sun.enterprise.naming");
 props.setProperty("java.naming.factory.state",
 "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl");

 // optional. Defaults to localhost. Only needed if web server/Client is running
 // on a different host than the appserver
 props.setProperty("org.omg.CORBA.ORBInitialHost", "localhost");
 // optional. Defaults to 3700. Only needed if target orb port is not 3700.
 props.setProperty("org.omg.CORBA.ORBInitialPort", "3700");

 try {
 ctx = new InitialContext(props);
 } catch (NamingException e) {
 e.printStackTrace();
 throw new UncheckedApplicationException(StatelessSessionBeanClient.class,e);
 }
 }
 public static void main(String[] args) throws CheckedApplicationException {
 CustomerRemote customerBean = null;
 try {
 // Fetch the CustomerRemote
 customerBean = (CustomerRemote) ctx.lookup("CustomerContainerTransSLSBean");
 Customer customer = new Customer();
 customer.setFirstName("Fast4J");
 customer.setLastName("EJB");

 // Adding a Customer
 customerBean.addCustomer(customer);

 // Fetch the Customers
 Collection<Customer> customerList =
 customerBean.getCustomers(Collections.EMPTY_MAP);

 } catch (NamingException e) {
 e.printStackTrace();

 FAST4J Online

Integrating Fast4J with EJB

Page 115 of 116 New Mexico ISD2R
Online Fast4J Express

 throw new UncheckedApplicationException(StatelessSessionBeanClient.class,
 "Unable to initialize the CustomerBean Remote Object",e);
 }

 }

}

Here is the output from the above example:

Exception in thread "main" com.deloitte.common.objects.framework.CheckedApplicationException:
Customer Name is Required, all transactions are rollbacked

It is important to note that in both of these examples the Fast4J PersistenceCommandManager is
not used for executing commands. This is because the PersistenceCommandManager is the
mechanism by which the framework controls transactions. Because CMT is being used, the
PersistenceCommandManager cannot be. PersistenceCommandManager maintains what is
referred to as a resource-local transaction, which is expressly forbidden in EJB environments (in
fact, many containers will throw an exception if PersistenceCommandManager is used).

Please note that, if CMT is being used, the EJB’s must use the DataSource which is configured in
the container and retrived via a JNDI name. This allows the container to intercept the operations
on the DataSource and properly include them in any transactions. Thus the Fast4J
ConnectionFactory implementation registered for your DAOs must fetch the container’s
DataSource by lookup via JNDI. For more information on creating a ConnectionFactory and
fetching a datasource by lookup via JNDI please refer section 3.3.2

7.4.3. Using Fast4J Transaction Management in SLSB

It is possible to use Fast4J transaction management in an EJB environment, if desired. If this
approach is desired, then one must disable the container transaction management facilities. In
order to accomplish this in SLSB, the “Never” transaction setting should be applied to all SLSBs.
This will shut off the transaction demarcation normally applied in CMT scenarios, and the Fast4J
PersistenceCommandManager may then be used as it would in a non-EJB environement. The
following modified version of the example shows how to use PersistenceCommandmanager
inside the addCustomer method, with a transaction attribute of “Never”.

/**
 * Session Bean implementation class CustomerF4JTransSLSBean
 */
@Stateless(mappedName = "CustomerF4JTransSLSBean")
@TransactionManagement(TransactionManagementType.CONTAINER)
@TransactionAttribute(TransactionAttributeType.NEVER)
public class CustomerF4JTransSLSBean implements CustomerRemote {

 private final DefaultDAOFactory daoFactory = Fast4JSampleEJBDAOFactory
 .getInstance();

 private static final Logger log =
Logger.getLogger(CustomerF4JTransSLSBean.class.getName());

 public CustomerF4JTransSLSBean() {
 }

 public Collection<Customer> getCustomers(Map<?, ?> paramMap)
 throws CheckedApplicationException {
 return daoFactory.createFor(Customer.class).getAll(paramMap);
 }

 // Transaction is never supported. But it can be managed by the Fast4J

 FAST4J Online

I
n

tegrating Fast4J with EJB E 117 of 116
GES 117

D 2

 // Framework
 @TransactionAttribute(TransactionAttributeType.NEVER)
 public void addCustomer(Customer theObject)
 throws CheckedApplicationException {
 log.info("CustomerF4JTransSLSBean::addCustomer() method invoked");
 CreateObjectCommand<Customer> createCommand = new
 CreateObjectCommand<Customer>(theObject);

 // Issue an invalid insert
 // Forget to set the name attribute which is not nullable.
 Customer invalidObject = new Customer();
 CreateObjectCommand<Customer> invalidNewObjectCommand = new
 CreateObjectCommand<Customer>(invalidObject);

 // Add Commands to Command List
 CommandList cmdList = new CommandList();
 // This command will execute successfully
 cmdList.add(createCommand);
 // This command will fail and throws exception
 // Hence the above command results will be rollbacked by the Fast4J
 // framework.
 cmdList.add(invalidNewObjectCommand);

 PersistenceCommandManager pManager = new PersistenceCommandManager();
 pManager.perform(cmdList);

 // the below will never get executed.
 log.info("CustomerTransSLSBean::addCustomer() completed execution");

 }
}

The same approach may be applied to message-driven beans. If use of the
PersistenceCommandManager is desired, the “Never” transaction setting should be applied to all
MDBs. Please note that the Fast4J PersistenceCommandManager cannot be used to include the
messaging queue in the transaction, and thus any queue operation (such as dequeueing a
message) will not occur in a single transaction with the DAO operations. Including the queue
operations into the same transactions as the DAOs can only be achieved via the XA transaction
capability of the container. Just as with SLSBs, to do this simply declaratively define your
transaction settings on the MBD, be sure to define your Fast4J ConnectionFactory with JNDI
lookup of the DataSource, and do not use the PersistenceCommandManager.

