

Contract No. PSC 12-630-4000-0001

Deliverable A4

Technical Plan - Technical

Architecture Plan

Appendix R – ASPEN Java

Standards and Guidelines

Version 2.2

 ASPEN Java

Standards and
Guidelines

Document Control Information Page 2 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Document Control Information

Document Information

Document Identification ASPEN Java Standards and Guidelines

Deliverable Name and Task

Item

Sub Task Item

Project Name New Mexico ASPEN

Client State of New Mexico - Human Services Department

Document Author Gopi Gunda

Document Version 2.2

Document Status Design Phase submission

Date Released June 1 2012

Response Due Date

File Name
Deliverable A4_Technical Architecture Plan-Appendix R Java
Standards and Guidelines_v2 2.doc

Document Edit History

Version Date Additions/Modifications Prepared/Revised by

1.0 03/19/2012 Gopi Gunda

2.0 04/19/2012 Added JSP Standards Gopi Gunda

2.1 05/28/2012 Incorporated Design Phase
comments

Naveen Abbineni

2.2 06/01/2012 Incorporated Design Phase
comments

Naveen Abbineni

Document Review/Approval History

Date Name Organization/Title Comments

 ASPEN Java

Standards and
Guidelines

 Page 3 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Table of Contents

1 Introduction ... 7
1.1 Purpose ... 7
1.2 Scope .. 7
1.3 Definitions, Acronyms, and Abbreviations .. 7
1.4 Overview ... 7

2. Code Organization and Style .. 8
2.1 Import Classes as logical groups ... 8
2.2 Paragraph/Indent Your Code ... 8
2.3 Write Short, Single Command Lines .. 9
2.4 Line Wrapping ... 9
2.5 Number of lines ... 10

1. Classes .. 10
2. Methods ... 10

2.6 MY ECLIPSE’s Format Code Facility ... 10
1. Settings in My Eclipse, .. 11

3. Comments ... 15
3.1 Type of Java Comments .. 15

1. Documentation Comments ... 15
2. Order of tags .. 15
3. C Style Comments .. 16
4. Single Line Comments .. 16

3.2 Javadoc Comments and Documentation .. 17
1. Packages ... 17

3.2.1.1 Package Javadoc Documentation .. 17
3.2.1.2 Summary .. 17
3.2.1.3 Description .. 17

2. Classes and Interfaces ... 17
3.2.2.1 Summary .. 17
3.2.2.2 Description .. 18
3.2.2.3 Description for data members .. 18
3.2.2.4 EJB Interface and Implementation classes ... 18

3. Methods ... 18
3.2.3.1 Summary .. 18
3.2.3.2 Description .. 19

4. Naming Conventions... 20
4.1 Packages .. 20
4.2 Classes ... 21
4.3 Interfaces .. 21
4.4 Servlets ... 21
4.5 Session EJBs .. 21
4.6 Entity EJBs .. 22
4.7 Methods .. 22
4.8 Naming Accessor Method .. 22

1. Getters ... 22
2. Setters.. 22

4.9 Naming Properties ... 23
4.10 Naming Constants ... 23
4.11 Naming Local Variables ... 23

1. Naming Streams ... 24

 ASPEN Java

Standards and
Guidelines

Table of Contents Page 4 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

2. Loop Counters .. 24
3. Naming temporary variables ... 24
4. Naming Exception Objects .. 24

4.12 Naming Parameters ... 25
4.13 Name Hiding.. 25

5. Declaration .. 25
5.1 Declaration .. 25
5.2 Initialization ... 26
5.3 Placement ... 26
5.4 Class and Interface Declarations: .. 26

6. Expressions and Statements .. 27
6.1 Simple Statements:.. 27
6.2 Compound Statements: ... 27
6.3 if, if-else, if else-if else Statements: .. 27
6.4 for Statements: .. 28
6.5 while Statements: .. 28
6.6 do-while Statements: ... 28
6.7 switch Statements: .. 28
6.8 try-catch Statements: ... 29
6.9 Blank Spaces .. 29
6.10 Blank Lines: ... 30

7. Servlet Development Standards and Guidelines ... 30
7.1 Servlets ... 30

1. General Standards for Servlets ... 31

8. Java Script Framework ... 32
8.1 Naming Conventions ... 32

1. Function Names ... 32
2. Class Names .. 32
3. Variable Names .. 32

8.2 Documentation .. 32
8.3 Spacing in the Code .. 32
8.4 Braces in the Code .. 33
8.5 General Guidelines .. 33
8.6 Change of Entity Rules .. 34

9. JSP Development Standards and Guidelines .. 34

10. Business/Entity Layer ... 35
10.1 Strongly Type Business Object: ... 35
10.2 Use Interfaces: .. 36
10.3 Business Object Independence: ... 36
10.4 No Persistence logic in BO: ... 37
10.5 No Business logic in Session Bean and Batch Driver program: .. 37
10.6 No Business Logic in JSP: ... 37

11. Data Layer.. 37
11.1 Use custom Finders: .. 37
11.2 Close Statements: ... 38
11.3 Reuse finders: ... 38
11.4 Check records updated by SQL ... 38

12. Integration ... 39
12.1 Use CMT transaction attribute:... 39
12.2 Do not use RequiresNew transaction attribute: ... 39

 ASPEN Java

Standards and
Guidelines

Table of Contents Page 5 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

12.3 Use NotSupported transaction attribute if no transaction is required: .. 39

13. EJB Development Standards and Guidelines .. 39
13.1 Session beans ... 39

1. Stateful Session Beans ... 39
2. Stateless Session Beans .. 40

13.2 Entity beans... 40
13.3 EJB Development using My Eclipse ... 40
13.4 General standards and guidelines for EJBs .. 40
13.5 General standards and guidelines for Session Beans... 41

14. Error Handling and Exceptions .. 42
14.1 Exception Usage: .. 42
14.2 Try-Catch Statements: ... 42
14.3 Reporting Exceptions: .. 43
14.4 Runtime Exceptions: .. 44
14.5 Safety Checks: .. 44
14.6 Exception Usage: .. 44

15. Garbage Collection ... 44
15.1 Finalization of class instances .. 44
15.2 Null References ... 44
15.3 String Concatenation ... 45
15.4 Release Resources. .. 45

16. Portability .. 45

17. Reuse ... 45

18. General Guidelines .. 46
18.1 Programming Conventions... 47
18.2 Packaging Conventions ... 47
18.3 Miscellaneous .. 47

1. Narrow accessibility .. 47
2. Use Interfaces .. 47
3. Array declaration at type ... 47
4. Remove System.out.println ... 48
5. Remove exception.printStackTrace... 48
6. Remove all unused attributes, variables and methods ... 48
7. Use constant literals ... 48
8. Use Java Calendar instead of Date ... 48
9. Override both hashcode and equals if either of them is overriden 48
10. Use object.equals(object) instead of == .. 48
11. Do not change the PK of the cargo. .. 49
12. Do not initialize variables unnecessarily .. 49
13. Do proper null check ... 49
14. Use static inner class .. 50
15. Constants should be static final .. 50
16. Use meaningful method name. ... 50
17. Do not overload equals ... 50
18. Remove dead code .. 50
19. Return zero-length array instead of null... 50
20. Do proper null check ... 51
21. Class variables not written into ... 51
22. Use StringBuffer instead of Strings ... 51
23. Avoid synchronization ... 51
24. Classes without state should be static ... 52

 ASPEN Java

Standards and
Guidelines

Table of Contents Page 6 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

25. Avoid synchronization in singleton’s getInstance ... 52
26. Use constant literals ... 52
27. Remove test classes from build .. 52
28. Make logging conditional .. 52
29. Do not use threading .. 53
30. Use shorcircuit logical operands ... 53
31. Don’t flip || and && .. 53
32. Do correct synchronization ... 53
33. Do not create unnecessary String objects ... 54
34. Object instantiation in loop .. 54
35. Do not put unnecessary code in finally .. 55
36. Use wait instead of spinning for lock ... 56
37. Do not check the same conditions redundantly ... 56
38. Avoid code duplication .. 57
39. Use primitive variables .. 57
40. Avoid redundant operations .. 57
41. Avoid floating point operations .. 58
42. Don’t use loose objects ... 58

19. Programming Standards for Performance ... 58

20. Glossary .. 60

 ASPEN Java

Standards and
Guidelines

 Page 7 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

1 Introduction

Guidelines and Standards are imperative tools that help maintain consistency and elegance
throughout the lifecycle of a project. A software development cycle is never complete without the
use and application of programming standards and guidelines. Programming guidelines help
developers maintain uniform and optimum code. This document deals with programming
standards and guidelines for the Java Enterprise Edition (JEE) environment.

1.1 Purpose

The purpose of this document is to ensure quality and reliability of developer’s source code. Also,
this document will serve as a reference for code maintenance. In essence, this document will not
only serve as a developer’s handbook but also for those who want to maintain the code in the
later stages of the project.

1.2 Scope

This document is mainly addressed towards the development phase of the ASPEN, YES NM and
EDM system.

1.3 Definitions, Acronyms, and Abbreviations

For definitions, acronyms and abbreviations please refer to the Glossary section of this
document.

1.4 Overview

This document is organized in such a way that one can choose to learn whatever section is
applicable for them. Code organization section deals with how a Java source code is sized,
indented, spaced and so on. Comments play an integral role in giving clarity to source code. This
is addressed in the Comments section. Also, there are sections that talk about Naming
conventions for packages, classes, Enterprise Java Beans (EJB), Java Server Pages, and
Servlets. Guidelines for declaring variables based on their scope are covered extensively in the
Declaration section. Expression and Statement section explains how to code expressions and
statements in a Java program. JSP/Servlet development standards and guidelines section deals
with standards for coding JSPs and Servlets. EJB Development standards and guidelines section
deals with development guidelines for session and entity EJBs. Exception and error handling is
an essential part in any Java code construct. This topic deals with effective exception and error
handling techniques.

Portability and Scalability are the hallmark of a Java source code. There is a section in this
document that deals with code portability and scalability. Compilation issues section deals with
any code compilation issues that are involved in developing a Java program

Finally, the miscellaneous guidelines section deals with a brief summary of all the guidelines
mentioned in this document.

 ASPEN Java

Standards and
Guidelines

 Page 8 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Note that this document has screen shots from My Eclipse to show some of the settings in the
tool.

2. Code Organization and Style

Coding standards and style are very important as they provide greater consistency within the
code. Consistency leads to better understanding of the code that in turn means that it is easier to
maintain.
Use proper indentation. This will help in maintaining and debugging the code. Wherever
necessary use javadoc style comments so that the documentation can be generated using the
javadoc utility.

2.1 Import Classes as logical groups

1. When importing other classes, group the imports logically (for ex: Java imports first, javax

imports next, third party jars and us.nm.state imports last).

2. Separate logical groups with a blank line.

3. Do not use wildcard imports but specify each class being imported on a separate line.

2.2 Paragraph/Indent Your Code

One way to improve the readability of a method is to paragraph it, or in other words
indent your code within the scope of a code block. Any code within braces, the { and }
characters, forms a block. The basic idea is that the code within a block must be
uniformly indented as one unit.
The Java convention is:

1. No space between a method or class name and the parenthesis "(" starting its parameter list.

2. Open brace "{" appears at the end of the same line as the declaration statement.

3. Closing brace "}" starts a line by itself indented to match its corresponding opening statement,

except when it is a null statement the "}" must appear immediately after the "{“.

4. Use the same indentation style that your Java development environment uses for the code

that it generates.

Note: For easy indentation purpose, use the My Eclipse’s “Format” facility to indent and
format the code automatically (Select All >> CNTRL+SHIFT+F).

Use White space in Your Code: a few blank lines, called white space, added to your
Java code can help make it much more readable by breaking it up into small, easy-to-
digest sections. Use a single blank line to separate logical groups of code, such as
control structures, and no blank lines to separate method definitions.

Example:
public class LeapYearBean{

private static final String copyright = "(c) ASPEN ";

 private int[] fieldLeapYears = null;

 ASPEN Java

Standards and
Guidelines

 Page 9 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 private int fieldStartYear = 0;

}

2.3 Write Short, Single Command Lines

Your code must do one thing per line. Writing code to do more than one thing on a single
line makes it harder to understand. Just like a method must do one thing and one thing
only, write code that does one thing on a single line.

2.4 Line Wrapping

When an expression will not fit on a single line, break it according to these general principles :

1. Break after a comma.

2. Break after an operator.

3. Prefer higher-level breaks to lower-level breaks.

4. Align the new line with the beginning of the expression at the same level on the previous

line.

5. Avoid lines longer than 80 characters

 Examples:

 The following example shows how to align the new line in case of an expression:

 String jdbcURL = driverObject.URL +

 driverObject.USER_ID +

 driverObject.PASSWORD;

 The following are examples of breaking an arithmetic expression:

Example (Incorrect):

computedBenefitAmt = (indivAmt1 + indivAmt2 + indivAmt3

 + indivAmt4) / (siz1+size2+size3);

Example (Correct):

averageBenefitAmt = (indivAmt + indivAmt2 + indivAmt3 +

indivAmt4)/

 (siz1+size2+size3);

 The following are examples of wrapping method declarations:

Example (Incorrect):
saveDriverStatus(String aCIN, String aCaseNum,

 String aDriverCode,

 String aMode) {

….

}

 ASPEN Java

Standards and
Guidelines

 Page 10 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Example (Correct):
saveDriverStatus(String aCIN, String aCaseNum,String

aDriverCode,

 String aMode) {

…..

}

The following example shows how lines and expressions should be wrapped:

Example (Incorrect):

if ((pageID != null && pageID.trim().length() > 0)

 ||(sesnID != null && sesnID.trim().length() > 0)) {

 doPageUpdateStatus(UPDATE_FLAG);

}

Example (Correct):

if ((pageID != null && pageID.trim().length() > 0)

 || (sesnID != null && sesnID.trim().length() > 0))

{

 doPageUpdateStatus(UPDATE_FLAG);

}

2.5 Number of lines

Large classes and method’s impact negatively readability, maintainability and extensibility of
source code, and is a poor programming practice. Smaller classes and methods are easier to
reuse than larger ones.

1. Classes

The number of lines in a class should be less than 700. If the code does not fit within this
limit, create package level classes. If this limit needs to be exceeded, document the
reasons.

2. Methods

The number of lines in a method should be less than 70. If the code does not fit within
this limit, create private or package level methods, or use inline commenting. Also, if this
limit needs to be exceeded, document the reasons.

2.6 MY ECLIPSE’s Format Code Facility

Use the format code facility available in MY ECLIPSE IDE. Right clicking on the Java code
window shows a pop-up menu. Select “Source” then “Format”. The figure below shows the
“Format” (highlighted) option.

 ASPEN Java

Standards and
Guidelines

 Page 11 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Figure: 1

1. Settings in My Eclipse,

Click on Windows->Preferences->Java->Code Style-> Formatter

 ASPEN Java

Standards and
Guidelines

 Page 12 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Click on Edit.

1. Select the “Control statements” tab. Ensure “Keep else if on the same line” is checked and uncheck

all others

2. Select the “Line Wrapping” tab and set the maximum line width to 80

3. Select the “Indentation” tab. Ensure the amount of spaces is set to 4. Make sure that check boxes are

checked/unchecked as shown below in figure 2.a

 ASPEN Java

Standards and
Guidelines

 Page 13 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 Figure: 2

 ASPEN Java

Standards and
Guidelines

 Page 14 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Figure: 2.a

 ASPEN Java

Standards and
Guidelines

 Page 15 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

3. Comments

Comments help us to organize and effectively manage the code. It also helps us to understand the
code in a reasonable amount of time. Here are some of the general guidelines:

1. Comments should add clarity to your code

2. Avoid decoration i.e. do not use banner like comments

3. Keep comments simple

4. Document why something is being done, not just what is done?

3.1 Type of Java Comments

1. Documentation Comments

Use documentation comments immediately before declarations of the interface or class name.
The first sentence of each documentation comment should be a summary sentence, containing
the description of the method or class. This sentence must end with a period followed by a line
terminator.

A documentation comment is made up of two parts – a description followed by two or more tags,
with a blank line between these two sections:

1. The first line is indented to line up with the code below the comment, and starts with

the begin-comment symbol (/**) followed by a return.

2. Subsequent lines start with an asterisk (*). They are indented an additional space so

that the asterisks line up. A space separates the asterisk from the descriptive text or

tag that follows it.

3. Insert a blank comment line between the description and the list of tags.

4. The last line begins with the end-comment symbol (*/) indented so that the asterisks

line up and followed by a return.

5. Break any doc-comment lines exceeding 80 characters in length.

Please refer to “How to Write Doc Comments for the JavaDoc™ tool” for more on documentation
comments. For writing Java API specifications, refer to “Requirements for Writing Java API
Specifications” documentation.

2. Order of tags

To generate javadoc comment tags, refer to the following table :

Tag Used For Purpose

@author name Classes, Interfaces Indicate the author for the given
class or piece of code.

@param name description Methods Used to describe a parameter
passed to a method, including its
type/class and its usage. Use
one tag per parameter.

@return description Methods Describe the return value, if any
for a class. Indicate the

 ASPEN Java

Standards and
Guidelines

 Page 16 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

type/class and the potential
use(s) of the return value.

@throws name Methods Describes the exceptions that a
method throws. Use one tag per
exception and give the full class
name for the exception.

@see Classes, Interfaces, Methods Includes link to other
packages/classes/interfaces

@deprecated Classes, Interfaces, Methods Use this tag to indicate that the
class/interface/method is
deprecated. Include when and
why it was deprecated.

Example:

/**

 * Find the method by comparing against the methods in the class.

 *

 * @param aClass Name of the Class that holds the needed method

 * @param methodName Name of the method that needs to be found

 * @param parameterCount Count of parameters

 * @return The matched method

 * @throws IndexOutOfBoundsException the size is too large

 * @author J.Smith

 */

3. C Style Comments

When commenting more than one line of code, always use the C Style comments. The first line must

contain the reason for commenting out the code when commenting out code.

Example:

/* Uncomment the following lines to print uncaught exceptions to stdout

 System.out.println("--------- UNCAUGHT EXCEPTION ---------");

 exception.printStackTrace(System.out);

*/

Use C style comments with a leading asterisk (*) when documenting comments that are more
than one line.

Example:

/* Since getMethod failed, call findMethod.

 handleException(exception);

 aMethod = findMethod(getBeanClass(), "isLeapYear", 1);

*/

4. Single Line Comments

Use single line comments internally within methods to document business logic, sections of code,
and declarations of temporary variables.

 ASPEN Java

Standards and
Guidelines

 Page 17 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Examples:

// Perform date validation - Single Line Comment

//Calendar cal=Calendar.getInstance(); - Single Line commented code

// cal.setTime(new Date()); - Single Line commented code

Note:

This above documentation is required for all methods except accessor methods and default
constructor.

3.2 Javadoc Comments and Documentation

1. Packages

This section describes the standards and guidelines for creating Javadoc documentation for
packages.

3.2.1.1 Package Javadoc Documentation

Create the file, package.html, in the directory for each package. All package level
Javadoc documentation should go into this file.

3.2.1.2 Summary

1. The first sentence must provide a summary of the purpose of the package.

3.2.1.3 Description

1. Describe the purpose and/or functionality of the package.

2. Organize the description as short paragraphs.

3. End each paragraph with the <p>. Separate each paragraph with a blank line

and a ‘*’ at the beginning.

4. Provide information that is global to the package. Provide only information

that users of the package need to know.

5. Document any limitations, assumptions, warnings and any other information

users of the package need to be aware of.

6. Keywords and names must be embedded between <code> and </code>

when referred to in a description.

7. If required, include links to other packages/classes/interfaces using the

@see tag.

2. Classes and Interfaces

This section describes the standards and guidelines for creating the Javadoc documentation for
classes and interfaces. The standards and guidelines for classes are valid for servlet and bean
classes as well.

3.2.2.1 Summary

1. The Javadoc comment must precede the class or interface definition.

2. A blank line must separate the Javadoc comment and the class or interface

definition.

 ASPEN Java

Standards and
Guidelines

 Page 18 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

3. The first sentence must provide a summary of the purpose of the class or

interface.

3.2.2.2 Description

1. Describe the purpose and/or functionality of the class.

2. Organize the description as short paragraphs.

3. End each paragraph with <p> and separate each paragraph with a blank line

and a ‘*’ at the beginning of the line.

4. Document assumptions, limitations, procedures, warnings and any other

information that users of the class or interface need to know.

5. Provide synchronization information if the class is likely to be used in a multi-

threaded environment.

6. Keywords and names must be embedded between <code> and </code>

when referred to in a description.

7. If the class is abstract, provide enough information to ensure that the class is

not used in an unintended way.

8. Specify the name of the author using the @author tag. Specify authors in

chronological order if there is more than one.

9. If required, include links to other packages/classes/interfaces using the

@see tag.

10. If the class or interface is deprecated, add the @deprecated tag and specify

the reason for the deprecation.

3.2.2.3 Description for data members

1. Describe the purpose of fields and constants, if any, in the class.

2. Specify the types and/or ranges the data members can be assigned.

3.2.2.4 EJB Interface and Implementation classes

 For the remote interface and the implementation classes of a session bean, the
bean javadoc comments must be specified in the remote interface. The javadoc
comments for the methods declared in the remote interface must also be
provided in the remote interface source file.

The bean implementation class must refer to the remote interface using the
@see <class name> tag. The javadoc for methods specific to the implementation
class must be specified in the source file of the bean implementation class.

3. Methods

This section describes the standards and guidelines for creating the Javadoc documentation for
methods.

3.2.3.1 Summary

1. The Javadoc comment must precede the method definition.

2. The first sentence should provide a summary of the method.

3. If the method is overloaded, the summary must provide information to

distinguish one from the other.

 ASPEN Java

Standards and
Guidelines

 Page 19 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4. A blank line should separate the Javadoc comment and the method

definition.

3.2.3.2 Description

1. Describe the purpose and/or functionality of the method.

2. Organize the description as short paragraphs.

3. End each paragraph with <p>. Separate paragraphs with a blank line and a

‘*’ at the beginning of the line.

4. Keywords and names must be embedded between <code> and </code>

when referred to in a description.

5. Describe all parameters of the method using the @param tag. Specify the

range of values, if applicable, for the parameters.

6. Describe the return value, if the method returns a value, using the @return

tag.

7. Use fully qualified class name (Ex: java.lang.String) in the @param and

@return tags.

8. Document assumptions, limitations, procedures, warnings and any other

information that callers of the method need to know.

9. If the method is likely to be used in a multi-threaded environment, provide

synchronization information.

10. Document pre-conditions, if any, before the method can be invoked.

11. Document side effects, if any, after invoking the method.

12. Provide documentation if the method blocks till a certain event occurs or

timeout behaviors.

13. Specify exceptions thrown by the method using the @throws tag.

14. Specify the author using the @author tag. If there is more than one author,

specify them in chronological order.

Example:
/**

 * Constructs dynamic tabs for next service
 * @param request Holds the servlet request

* @param response Holds the servlet response
* @return The name of the service.
* @throws IOException
* @author GopiGunda

 */

 ASPEN Java

Standards and
Guidelines

 Page 20 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4. Naming Conventions

1. Use full English descriptors that accurately describe the variable or field or a class.

For example, use names like firstName, benefitAmount, caseNumber are acceptable fields
names and Vehicle, EarnedIncome are acceptable class names. Do not use variable names like
x1, y1 etc. as they do not convey any meaning to the application context.

2. Use mixed case to make names readable.

In general, use lower case letters, but capitalize the first letter of class names and
interface names, as well as the first letter of any non-initial word.

3. Use abbreviations sparingly, but if you do so then use them intelligently.

Maintain a list of standard short forms (abbreviations), and take care to choose them
wisely. Use them consistently. For example, if you want to use a short form for the word
"number," then choose one of nbr or num, document which one you chose (it does not
really matter which one), and use only that one. Refer to the ASPEN Project Glossary
document under the Abbreviations section to use standard abbreviations.

4. Do not use Long Names.

Class names or method names must not be more than 25 characters as long class names make
it difficult to reference them during their instantiations and also for simple readability purpose. Do
not abbreviate the class if the length of its name is less than 25 characters. For class names
longer than the specified limit, use the standard abbreviations to define the class name. For
example, naming the class for absent parent as AbsentParent is always preferred over
AbsentParentInformation and IndvNonFinancialSession is preferred over
IndividualNonFinancialSession.

Do not add functional area abbreviations to method name.

Example:
In class DcStadardMedicalAllowSessionEJBBean there is a method processDCSMS. Instead, the
method name should be processSMS.

5. Avoid leading or trailing underscores.

Names with leading or trailing underscores are usually reserved for system purposes, and may
not be used for any user-created names except for pre-processor defines. More importantly,
underscores are annoying and difficult to type so, avoid their use whenever possible.

4.1 Packages

Names of packages that are to be made available for local use (only for the project purpose),
must have a first identifier that begins with a lowercase letter, but that first identifier must not be
the identifier java. Use “us.nm.dhs.fw” for the ASPEN framework package, with all the letters
being lowercase.

 ASPEN Java

Standards and
Guidelines

 Page 21 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

The Java source file should be placed in the same sub-package as specified in the Rose model
and conforms to the modeling standards. No sub-package should be created that does not
conform to the Rose model.

The package name must also conform to the naming conventions specified in the ASPEN
Modeling Standards and Guidelines document.

4.2 Classes

Class names must be descriptive noun phrases. Use lower case letters, but capitalize the first
letter, as well as the first letter of any non-initial word.

The class name must also conform to the naming conventions specified in the ASPEN Modeling
Standards and Guidelines documents.

Example:

The class name for individual non-financial information must be named as IndivNonFinancial.
SecurityManager must be the name of the security manager class

4.3 Interfaces

Interface names must be descriptive noun phrases. Use lower case letters, but capitalize the first
letter, as well as the first letter of any non-initial word. All interface names must start with an
uppercase letter “I”.

 Example:

 The interface name for ClientCorrespondence functional area must be named as

 IClientCorrespondence.

4.4 Servlets

The naming convention must follow that of the class name and in addition to this all the servlet
Names will end with “Servlet” as the suffix

Example:

The class name for the Controller servlet must read as ControllerServlet.

4.5 Session EJBs

Use lower case letters, but capitalize the first letter, as well as the first letter of any non-initial
word when naming an Enterprise JavaBean. For a session bean, use the word “SessionEJB” to
indicate that the bean is of session type.
Example:

 ASPEN Java

Standards and
Guidelines

 Page 22 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

IndvClearanceSessionEJB is a session EJB’s remote interface that is associated with Individual
Clearance functional area. Similarly, IndvClearanceSessionEJBBean is the name of the bean
implementation and IndvClearanceSessionEJBHome is the name of the home interface.

4.6 Entity EJBs

Entity EJBs are not used in our project.

4.7 Methods

Method names must be verbs or verb phrases, in mixed case, with the first letter lowercase and
the first letter of any subsequent words capitalized.

Examples:
saveApplication()

printApplication()

generateCaseNumber()

addIndividual()

4.8 Naming Accessor Method

1. Getters

Getters are methods that return the value of a property. Prefix the word
“get” to the name of the property, unless it is a Boolean result. For
Boolean results, prefix “is” to the name instead of “get”.

Examples:

getFirstName()

getMiddleInitial()

isPregnant()

By following this naming convention, it is obvious that a method returns a property of an

object, and for boolean getters it is either true or false.

2. Setters

Setters, also known as mutators, are methods that modify the values of a property. Prefix the
word “set” to the name of the property to get the setter function.

Examples:

setFirstName(String aFirstName)

setSuffix(String aSuffix)

 ASPEN Java

Standards and
Guidelines

 Page 23 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4.9 Naming Properties

A property is a piece of data that describes the state of a class. Fields in Java may be a primitive
type such as int, boolean or a reference type such as String, Object etc.

Use English descriptors to name fields to make it obvious what the field represents. For collection
classes like vectors and array use plural to indicate that they represent multiple values.

Examples:

firstName

zipCode

vehicleTypes

indvDeathDate

4.10 Naming Constants

In Java, constants are values that do not change, and are typically implemented as final static fields.

The names of constants in class types should be and final static variables of class types must be
one or more words, acronyms, or abbreviations, all uppercase, with components separated by
underscore “_” characters. In case of interfaces, all fields in interfaces are implicitly static and
final, and they are often, but not always constants.

Examples:

 interface IdatabaseParm{

 String JDBC_DRIVER = “oracle.jdbc.driver.OracleDriver”;

 String JDBC_URL = “jdbc:oracle:thin:@hostname:1521:sid”;

 }

interface IprintColors {

 int YELLOW = 8;

 int CYAN = 16;

 int MAGENTA = 32;

 }

For class constants that are public, examples could be MIN_VALUE, MAX_VALUE of the
class java.lang.Character.

public class FocusEvent extends ComponentEvent {

 public static final int FOCUS_FIRST = 1004;

 public static final int FOCUS_LAST = 1005;

}

4.11 Naming Local Variables

In general, local variables are named following the same conventions as used for fields,
in other words use full English descriptors with the first letter of any non-initial word in

 ASPEN Java

Standards and
Guidelines

 Page 24 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

uppercase. One-character local variable or parameter names should be avoided, except
for temporary and looping variables, or where a variable holds an undistinguished value
of a type.

1. Naming Streams

When there is a single input and/or output stream being opened, used, and then closed
within a method the common convention is to use in and out for the names of these
streams, respectively.

2. Loop Counters

Loops counters are common variables in any Java code and as it is accepted by the Java
programming language, it is also acceptable to use letters like i, j or k. Loop names must
be used consistently.

3. Naming temporary variables

One-character local variable or parameter names should be avoided, except for

temporary variables and loop counters. The naming convention for temporary variables

is:

1. b for byte

2. c for char

3. d for double

4. e for Exception

5. f for float

6. i,j and k for integers

7. l for long

8. o for object

9. s for string

10. v for any arbitrary of some type.

11. t for Throwable

12. z for boolean

4. Naming Exception Objects

Because exception handling is also very common in Java coding the use of the letter e
for a generic exception is considered acceptable. But, in general use exception names
along the lines of exception raised.

Examples:

catch(NamingException ne)

catch(IOException ie)

 ASPEN Java

Standards and
Guidelines

 Page 25 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4.12 Naming Parameters

Parameters must be named following the exact same conventions as for local variables. As with
local variables, name hiding is an issue. In addition to the names, all the parameters must be
prefixed with “a” to indicate that it is an “argument” for a method.
Examples:
aApplicant

aFirstName

4.13 Name Hiding

Some declarations may be hidden in part of their scope by another declaration of the same name,
in which case a simple name cannot be used to refer to the declared entity. So, avoid hiding
names when declaring class variables.

 Example:

 class Test {

 static int localVariable = 1;

 public static void main(String[] args]) {

 int localVariable = 0;

 System.out.println(“localVariable =”+ localVariable);

 System.out.println(“Test. localVariable = “ +

 Test.localVariable);

 }

 }

 produces the output : localVariable = 0,Test.localVariable = 1;

5. Declaration

5.1 Declaration

One declaration per line is recommended since it encourages commenting.

Example (Incorrect):

int indvCounter, indivHouseholdSize;

 Example (Correct):

int indvCounter;

int indivHouseholdSize;

Do not put different types on the same line.

Note: The examples above use one space between the type and the identifier. Another acceptable
alternative is to use tabs, e.g.:

Object currentEntry;

 ASPEN Java

Standards and
Guidelines

 Page 26 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

5.2 Initialization

Local variables must be initialized where they are declared. The only reason not to initialize a variable
where it is declared is if the initial value depends on some computation occurring first.

5.3 Placement

Declarations muse be put only at the beginning of block (a block is any code surrounded by curly braces
"{" and "}"). Waiting to declare variables until their first use can be confusing and hamper code portability
within the scope.

Example:

void myMethod() {

 int intVar1 = 0; // beginning of method block

 if (condition) {

 int intVar2 = 0; // beginning of "if" block

 ...

 }

}

The one exception to the rule is indexes of for loops, which in Java can be declared in the for statement:

for (int i = 0; i < maxLoops; i++) { ... }

Do not use local declarations that hide declarations at higher levels. For example, do not declare the
same variable name in an inner block:

Example:
int myCounter;

...

myMethod() {

 if (condition) {

 int myCounter = 0; // AVOID!

 ...

 }

 ...

}

5.4 Class and Interface Declarations:

When coding Java classes and interfaces, the following formatting rules must be followed:

1. No space between a method name and the parenthesis "(" starting its parameter list.

2. Open brace "{" appears at the end of the same line as the declaration statement.

3. Closing brace "}" starts a line by itself indented to match its corresponding opening

statement, except when it is a null statement the "}" must appear immediately after the

"{".

Example:
class Sample extends Object {

 ASPEN Java

Standards and
Guidelines

 Page 27 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

int intVar1;

int intVar2;

Sample(int aParm1, int aParm2) {

 intVar1= aParm1;

 intVar2= aParm2;

}

 int emptyMethod() {}

 ...

}

6. Expressions and Statements

6.1 Simple Statements:

Each line must contain at most one statement.

6.2 Compound Statements:

Compound statements are statements that contain lists of statements enclosed in braces "{ statements }".
The enclosed statements must be indented one more level than the compound statement. The opening
brace must be at the end of the line that begins the compound statement; the closing brace must begin a
line and be indented to the beginning of the compound statement.

Braces are used around all statements; even single statements, when they are part of a control structure,
such as an if-else or for statement. This makes it easier to add statements without accidentally
introducing bugs due to forgetting to add braces.

6.3 if, if-else, if else-if else Statements:

The if-else class of statements must have the following form:

if (condition) {

 statements;

}

if (condition) {

 statements;

} else {

 statements;

}

if (condition) {

 statements;

} else if (condition) {

 statements;

} else{

 statements;

}

Note: if statements always use braces {}. Do not use the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!

 statement;

 ASPEN Java

Standards and
Guidelines

 Page 28 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

6.4 for Statements:

A for statement must have the following form:

for (initialization; condition; update) {

 statements;

}

An empty for statement (one in which all the work is done in the initialization, condition, and update
clauses) must have the following form:

for (initialization; condition; update);

When using the comma operator in the initialization or update clause of a for statement, do not use more
than three variables. If needed, separate statements must be used before the for loop (for the initialization
clause) or at the end of the loop (for the update clause).

6.5 while Statements:

A while statement must have the following form:

while (condition) {

 statements;

}

An empty while statement must have the following form:

while (condition);

6.6 do-while Statements:

A do-while statement must have the following form:

do {

 statements;

} while (condition);

6.7 switch Statements:

A switch statement must have the following form:

switch (condition) {

case ABC:

 statements;

 /* falls through */

case DEF:

 statements;

 ASPEN Java

Standards and
Guidelines

 Page 29 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 break;

case XYZ:

 statements;

 break;

default:

 statements;

 break;

}

Every switch statement must end in “/* falls through */” or “break”. The break in the default case is
redundant, but it prevents a fall-through error if later another case is added.

6.8 try-catch Statements:

A try-catch statement must have the following format:

try {

 statements;

} catch (ExceptionClass e) {

 statements;

}

A try-catch statement may also be followed by finally, which executes regardless of whether or not the try
block has completed successfully.

try {

 statements;

} catch (ExceptionClass e) {

 statements;

} finally {

 statements;

}

Note: Use the MY ECLIPSE “Format Code” option to format the code. Refer to section 2.4 for the MY
ECLIPSE code formatter option.

6.9 Blank Spaces

Blank spaces must be used in the following circumstances:

1. A keyword followed by a parenthesis must be separated by a space.

 Example:

 while (true) {

...

 }

Note that a blank space must not be used between a method name and its opening
parenthesis. This helps to distinguish keywords from method calls.

2. A blank space must appear after commas in argument lists.

3. All binary operators except “.” must be separated from their operands by spaces. Blank

 ASPEN Java

Standards and
Guidelines

 Page 30 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

spaces must never separate unary operators such as unary minus, increment ("++"), and

decrement ("--") from their operands.
 Example:

 sumAmount += averageBalance + penaltyAmount;

 balanceAmount = (averageBalance + penaltyAmount) /

 (rate * numPeriods);

 printAmount("Amount is " + balanceAmount + "\n");

4. The expressions in a for statement must be separated by blank spaces.

 Example:

 for (i=0; i < indivCounter; i++)

5. Casts must be followed by a blank space.

Examples:

findByNumAndName((long) aNum, (Object) ApplicantSession);

saveCase((int) (cp + 5), ((int) (i + 3)) + 1);

6.10 Blank Lines:

Blank lines improve readability by setting off sections of code that are logically related. Blank lines must
always be used in the following circumstances to improve readability between sections of a source file. As
a standard, one blank line must always be used in the following circumstances:

1. Between the local variables in a method and its first statement.

2. Before a block or single-line comment if it is not embedded in a control statement.

3. Between logical sections inside a method to improve readability.

7. Servlet Development Standards and Guidelines

7.1 Servlets

Servlets are protocol and platform independent server-side software components, written in Java. They
run inside a Java enabled server or application server, such as the WebSphere Application Server.
Servlets are loaded and executed within the Java Virtual Machine (JVM) of the Web server or application
server, in much the same way that applets are loaded and executed within the JVM of the Web client.
Since servlets run inside the servers, however, they do not need a graphical user interface (GUI). In this
sense, servlets are also faceless objects.

 ASPEN Java

Standards and
Guidelines

 Page 31 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

In ASPEN, servlets must be used as Controllers that act as request dispatchers for page requests from a
JSP. The servlet will collect the page information and merely pass it on to the appropriate Enterprise
JavaBeans (EJBs) that act as the Model in a true Model-View-Controller (MVC) paradigm.

The following code example shows a generic HttpServlet:

import java.io.*;

import java.lang.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class ControllerServlet extends HttpServlet{

 public void init(ServletConfig config) throws ServletException{

 super.init(config);

 }

 public void service (HttpServletRequest req,

 HttpServletResponse res) throws

ServletException, IOException{

 boolean transactionResult;

 // Get the current screen
 String currentScreen = req.getParameterValues(CURRENT_SCREEN);

 if(currentScreen.equals(INDIV_DEMOGRAPHICS){

 DemographicsBean indivBean = new DemographicsBean();

 indivBean.setAgeData(CargoIndividual.getAge());

indivBean.setIndivName(CargoIndividual.getIndivName());

 . . .

 indivBean.setCr_User_id(CargoIndividual.getCr_User_id());

 transactionResult =

IndividualSession.processInformation (indivBean);

 }

 //Get the next window to be opened
 //Note parameters are already in the request object

 String nextJSP =

req.getParameterValues(NEXT_PAGE) + JSP_FILE_EXTENSION;

 //Dispatch the request
 RequestDispatcher rd =

getServletContext().getRequestDispatcher(nextJSP);

 rd.forward(req, res);

}

 }

1. General Standards for Servlets

1. Follow the naming convention for classes when coding servlets.

2. Specify the servlet path in the default_app.webapp properties file to avoid specifying long

names inside JSPs.

 ASPEN Java

Standards and
Guidelines

 Page 32 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

8. Java Script Framework

Common Java script framework is built and available in the ASPEN framework. All standard
validations and common error display techniques are defined and developed. Individual
development teams are mandated to use this framework for client side validations and client side
error messaging. Teams can develop their team specific JavaScript only for functionalities specific to
the team with prior approval from the presentation framework team.By using this framework
JavaScripts are not duplicated and easy to maintain. The look and feel of the error messages and
the results of the common validations are same across the application. This section of the document
describes the JavaScript standards for the ASPEN project.

8.1 Naming Conventions

1. Function Names

All JavaScript function names must begin with a lowercase letter, and the first letter of each
subsequent new word must be uppercase with all other letters lowercase. Function names
must be self explantory for the opeartion they are intended to do.

e.g. function validateNumber()

2. Class Names

All JavaScript Class names must begin with a capital letter, and the first letter of each
subsequent new word must be capitalised with all other letters lowercase. Class name must be
self explanatory for the intentation they are created.

e.g. EmployeeDetails

3. Variable Names

All JavaScript variables should be declared in first line of JavaScript function. All variables
must be declared in local scope, however global variables can be declared with approval from
the QA or Framework team. Variable names must begin with a lowercase letter, and the first
letter of each subsequent word must be uppercase with all other letters lowercase. Variable
names should be self explanatory. Variables declared should be initialized as necessary.

e.g. var employeeSalary=0

8.2 Documentation

All JavaScript functions must be documented in detail about their functionality. The function
should be designed such that they can be reused by other applications and documented in
detail on how it can be used. Any major section of the code doing a complex logic should be
explained in comments.

8.3 Spacing in the Code

All JavaScript development must be spaced properly such that they are easily readable. The
readability of the code depends on the spacing and indentation used in the code.

 ASPEN Java

Standards and
Guidelines

 Page 33 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

For example, Approach 1:

for (i=0;i<10’i++) { alert(i); }

is same as Approach 2:

for (i=0;i<10;i++) {

 alert(i);

}

Approach 2 is more readable than Approach 1. Developers must follow this standard and avoid
writing multiple lines of code in one line. Also, they must allow enough spacing to make the
code more readable.

8.4 Braces in the Code

JavaScript code should be properly parenthesized and braced for better readability and
functionality.

Example: Approach 1:

for (i=0;i<10;i++) {

 alert (i);

}

is same as Approach 2:

for (i=0; i<10; i++)

{

 alert (i);

}

However bracing in the Approach 1 is more readable.

8.5 General Guidelines

Most of the common functionalities are developed in the ASPEN JavaScript framework. However
there might be some scenarios where the functional areas need to develop their function specific
JavaScript. In these scenarios, custom made JavaScript should follow the following rules:

• Developers should look into the GlobalValidations.js and GlobalError.js to find their

needed JavaScript functionality. Only the functionality which is not available in these

JavaScript files should be custom developed with the prior approval from the QA and

framework Team.

• All Track specific functions should be created in their track specific JavaScript file. For

example, Security module specific JavaScript functions should be coded in se.js.

• Functions that can be reused by multiple tracks must be added to the framework’s global

 ASPEN Java

Standards and
Guidelines

 Page 34 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

functions JavaScript.

• No JavaScript should be written on JSP Pages.

• JavaScript alert error messages should follow the framework method

alertMe(<<ErrorCode number>>). This will enable the JavaScript framework to generate

message in the standard format.

• All error codes should be placed in a separate JS file. For example, error codes

specific to Security module pages should be in SEErrorcodes.js.

• Developers are encouraged to use Framework functions fully or as part of their custom

JavaScript.

• Any custom JavaScript method added to a JavaScript file must be added to the index of

the JavaScript file.

8.6 Change of Entity Rules

This Section describes the common rules applicable in the system, when an entity changes
happen.

If no entity is selected in the context, and the users select the pages, which are entity specific
e.g. Case data, the system will redirect them to entity selection page, e.g. Case selection page.
Where the Case is selected and then they are redirected to the last logical unit of work screen
in which the entity was worked on.

When the users progress to the next screen specific to the entity, the entity context is carried
forward and data related to the entity will be retrieved and shown..

When the entity is changed using the Quick links or context searches, in between the
operations of an entity, the page is redirected to the last logical unit of work screen in which the
new entity was worked on.

9. JSP Development Standards and Guidelines

 ASPEN Java

Standards and
Guidelines

 Page 35 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

10. Business/Entity Layer

10.1 Strongly Type Business Object:

Business object interfaces should be strongly typed. Type checking and type conversion should be done
such that entities are of a common type throughout the system.

1. If the BO takes in Indv_id then the parameter should be of type Long instead of String.

Example:
In CoNoticeOfDecisions.java:

protected String getIndividualName(String indvIdString) {

Make sure the JSP is in the correct directory as part of the publishing path

Make sure the JSP name follows the naming conventions

JSP must be developed using one of the 5 ASPEN JSP templates

JavaScript Validations are done to correctly implement the validation and enable/disable rules for the page

JavaScript Validations are coded according to the JavaScript coding standards (if applicable)

Page must contain the following elements or sections:

• Logo

• Global Navigation bar

• Session Header

• Page Header

All texts and labels must be left aligned

All mandatory fields must have the sign to indicate mandatory field – exceptions are conditional mandatory fields

Tab sequence must be set as “left to right” and “top to bottom”. For buttons, the tab sequence should be set to “right
to left”

Each page must have a standard error page included.

Error messages are placed near the top of each page, below the title, and before general page content

Names are entered in input screens in five separate fields. The fields should be arranged in the format: Prefix, First
(40char), Middle (40char), Last (40char), Suffix. Names on search results pages are displayed in a concatenated
format:
Client: Last (10char)[COMMA] First (10char)[SPACE] Age (3char) Gender (1char)
Employee: Last (10char)[COMMA] First (10char)[SPACE] Middle(1char)

Address is formatted as described in the ASPEN UI Guidelines

A text equivalent is provided for every non-text element. The <ALT> tags are provided for all images.

Dates are displayed in the format “mm/dd/yyyy” or “mm/yyyy”

Time is displayed/entered in the format “HH:MM xm TZ”, where x is either “a” or “p” and TZ is the time zone.

The even rows in the search result sets are set with a BG color of #F7FBDF to improve readability.

Standard buttons are used for all the standard actions like add, edit, delete, submit and reset.

The “Previous” and “Next” buttons are used only in a situation where a user is being led through a series of screens.

All the three levels of help (PAGE,FIELD,APPLICATION) are accessible

When expecting more than 100 records in the search results screen, there should be a previous and next button to be
able to view all records

VCR button should be used to view history record, depending on screen requirements

 ASPEN Java

Standards and
Guidelines

 Page 36 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 return getIndividualName(new Long(indvIdString));// another

method with Long

}

2. Do not pass generic maps as arguments to BO methods.

Example:
public DcCaseAddressesCargo deleteAddress(DcCaseAddressesCargo

deleteAddressCargo, Map request, User user) throws

ApplicationException, FrameworkException, Exception {

 DcCaseAddressesCargo dcAddressCargo = new DcCaseAddressesCargo();

 if(deleteAddressCargo != null){

 DcCaseAddressesCollection addressColl = new

DcCaseAddressesCollection();

 addressColl.add(deleteAddressCargo);

 addressColl.delete(addressColl);

 if (addressColl != null && addressColl.size() > 0) {

 dcAddressCargo = addressColl.getResults(0);

 }

 request.put(DcConstants.LUW_DATA_CHANGED_SW, "Y");

 DcCommonBO.updateCaseDataChange(request,

 Timestamp.valueOf((new Timestamp((new

java.util.Date()).getTime())).toString().substring(0,10)

+" 00:00:00.0"),

 null,

 null,

 user.getUserId());

 }

 return dcAddressCargo;

 }

DcHeadofHouseholdBO.checkForOngoingRecord(HashMap

headofHouseholdMap)

10.2 Use Interfaces:

All BOs should have an interface.

10.3 Business Object Independence:

Business objects should not have any knowledge of the page or job by which it is being invoked.

Example:
DcAddressBO.stateChangeAlert has the following code

DcCommonBO.sendAlert(((Long)

(request.get(DcConstants.CASE_NUMBER))).longValue(),

 user,

 (String) request.get(DcConstants.CASE_MODE),

 "DCHIP");

Due to the usage of DCHIP page_id, this BO has now become tied up with that particular and hence
has lost reusability.

 ASPEN Java

Standards and
Guidelines

 Page 37 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

10.4 No Persistence logic in BO:

No SQL should be present in the business tier.

Example (Incorrect):
IQEmployeeAlertSessionEJBBean. getSearchResultsIQASR(Map aMap)

builds the SQL dynamically as

 if (lastName.trim().length() > 0) {

 sbf.append(" upper(MO_EMPLOYEES.LAST_NAME) like upper('" +

lastName + "')");

 } else {

 sbf.append("");

 }

Dynamic SQL building should be avoided. Instead bind variables should be used that is
computed by the same if-else logic that creates the SQL text.

10.5 No Business logic in Session Bean and Batch Driver program:

Session Bean and Batch driver program should not have business logic that belongs in business objects.

10.6 No Business Logic in JSP:

No business logic should be present in the JSP pages. The place for business logic is in business
objects.

Example (Incorrect):
INRSDViewSOLQReportDetails.jsp refers reference table

String inputCat = solqDetailsCargo.getInputCatAssistCd()+"";

String refinputCat = null;

if (inputCat!= null) {

 refinputCat =

ReferenceTableManager.getValueByColumn(true,"INSOLQCATCD",

inputCat, "DESCRIPTION");

 if ((refinputCat != null) &&

(!refinputCat.trim().equals(""))) {

 inputCat = refinputCat;

}

The JSP code should not access to the reference table. The access to business logic should be done in

the business object and be passed into the JSP with the request object

11. Data Layer

11.1 Use custom Finders:

Use custom finders if the ratio of columns used versus columns fetched is worse than 1:2

 ASPEN Java

Standards and
Guidelines

 Page 38 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

11.2 Close Statements:

All statements should be closed in the finally block. If prefetch is being used (in case of batch) then once
the prefetch logic is completed a collection.clear() should be called for resource cleanup. The tools to find
cursor leak should be run more often.

11.3 Reuse finders:

Custom finders in the custom DAOs should be reused as much as possible. The developers must look for
existing finders with the same where clause and try to reuse it. If a new finder is required, developers can
add them to the custom DAO. The data Access team will review the code for quality and approve the
changes before moving the changes to the build.

11.4 Check records updated by SQL

Throw appropriate exception if a SQL was not able to do what it was intended to do.

Example (Incorrect):

public boolean delete(IValueObject cb) throws

ASPENRunTimeException {

FwBatchFileCargo cargo = (FwBatchFileCargo)cb;

Connection conn = null;

PreparedStatement statement = null;

int rowCount = 0;

try {

 conn = getConnection();

 statement = conn.prepareStatement(DELETE_SQL);

 int idx = 1;

 statement.setString(idx++,cargo.getLogicalFileName())

;

 statement.setString(idx++,cargo.getJobId());

 rowCount = statement.executeUpdate();

}

catch (SQLException e) {

 throw new ASPENRunTimeException(e.getMessage());

}

Example (Correct):
public boolean delete(IValueObject cb) throws

ASPENRunTimeException {

FwBatchFileCargo cargo = (FwBatchFileCargo)cb;

Connection conn = null;

PreparedStatement statement = null;

int rowCount = 0;

try {

 conn = getConnection();

 statement = conn.prepareStatement(DELETE_SQL);

 int idx = 1;

 statement.setString(idx++,cargo.getLogicalFileName())

;

 statement.setString(idx++,cargo.getJobId());

 rowCount = statement.executeUpdate();

if (rowCount == 0) throw new

ASPENRunTimeException("No Records deleted");

}

catch (SQLException e) {

 throw new ASPENRunTimeException(e.getMessage());

 ASPEN Java

Standards and
Guidelines

 Page 39 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

}

12. Integration

12.1 Use CMT transaction attribute:

Do not use bean managed transaction declaration. Instead use container managed transaction.

12.2 Do not use RequiresNew transaction attribute:

Never create Deployment Descriptor code with RequiresNew. If an exception is required then it should be
approved by the App. Architect.

Example (Incorrect):
 <container-transaction id="MethodTransaction_21">

 <method id="MethodElement_21">

 <ejb-name>AppProgramControllerSessionEJB</ejb-

name>

 <method-intf>Remote</method-intf>

 <method-name>createInPregnancyTriggers</method-name>

 <method-params>

 <method-param>java.util.Map</method-param>

 </method-params>

 </method>

 <trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

If this method were called in a loop, it would cause a spinning of transaction that the DB would be
unable to handle.

12.3 Use NotSupported transaction attribute if no transaction is required:

Session beans that do not participate in transactions should have Tx attribute set as not supported.

13. EJB Development Standards and Guidelines

EJB is a component architecture that allows developers to quickly create scalable enterprise
applications. It provides complex middleware features at no cost to application developers. In the
MVC paradigm, the EJBs act as the Model tier. EJBs are classified into two types:

13.1 Session beans

Session beans represent active objects that either "belongs" to a single client (a "stateful"

Session bean), or that are entirely computational, with no persistent state, and that are

shared between multiple clients ("stateless" Session beans). Session EJBs must be

developed for the application to handle business logic.

1. Stateful Session Beans

Stateful session EJBs must be used, depending upon the need to maintain application

 ASPEN Java

Standards and
Guidelines

 Page 40 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

state. Business objects that are not short lived (such as Intake Driver) must be developed
using stateful session beans. Usage of stateful session beans must be avoided except for
situations that require the client (Servlet or a JSP) to maintain the application state.

When using stateful session beans, ensure the remove() method is called when the
services of the bean are not required any more.

2. Stateless Session Beans

Stateless session beans, unlike the stateful session beans, do not maintain the
application state. Use stateless session beans when dealing with business data
validations, storage, retrieval logic for entity beans, and to develop business logic
methods for the application.

13.2 Entity beans

Entity beans are not used in our project due to performance reasons.

13.3 EJB Development using My Eclipse

EJBs must be developed using My Eclipse IDE. Unit testing of all EJBs must also be done using
the WebSphere Application Server 8.0 that is integrated with My Eclipse development
environment.

13.4 General standards and guidelines for EJBs

1. Names of the Home and Remote interface classes must be the default names that My Eclipse

generates.

2. Use naming context Cache creation and EJB home lookup framework object to get better

performance.

3. Use “com.ibm.websphere.naming.WsnInitialContextFactory” to identify the naming service.

Do not hard code this attribute inside the bean class method. Use a standard environment

variable called INITIAL_CONTEXT_FACTORy in the environment variable section and set it to the

above factory class.

4. Use EJBException instead of RemoteException.

5. Ensure the bean implements all the signatures of the ejbCreate() method.

6. Specify the JNDI name for the EJB in My Eclipse. For example, if the EJB name is

SessionManager, the JNDI name is specified as “ejb/SessionManager”, as show in the figure

below:

 ASPEN Java

Standards and
Guidelines

 Page 41 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Figure: 3

13.5 General standards and guidelines for Session Beans

1. Follow the naming conventions for developing EJBs. See section 4 for naming conventions.

2. Set configuration parameters such as JNDI Context factory Name, JDBC connection settings in

the environment variables.

3. Use local variables for defining objects. Do not use instance variables, as they will lose their

handle after a method invocation.

4. Usage of access beans must be avoided when creating session beans.

5. The default standard for setting the bean properties are as shown:

 ASPEN Java

Standards and
Guidelines

 Page 42 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Figure: 4

14. Error Handling and Exceptions

14.1 Exception Usage:

Use exceptions to handle logic and programming errors, configuration errors, corrupted data, and
resource exhaustion. Report exceptions by the appropriate logging mechanism as early as possible.

14.2 Try-Catch Statements:

Use try-catch statement wherever applicable and it must have the following format:

try {

statements;

} catch (ExceptionClass e) {

statements;

}

 ASPEN Java

Standards and
Guidelines

 Page 43 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

A try-catch statement may also be followed by finally, which executes regardless of whether or

not the try block has completed successfully.

try {

statements;

} catch (ExceptionClass e) {

statements;

} finally {

statements;

}

 Example:

 try {

 Connection conn = getConnection();

 PreparedStatement statement = conn.prepareStatement(SELECT_SQL);

 ResultSet rs = statement.executeQuery();

} catch (SQLException e) {

 throw new Exception(e.getMessage());

} finally {

try {

 if (rs != null) rs.close();

 if (statement != null) statement.close();

 if (conn != null && getClose()) conn.close();

} catch (SQLException e) {

 throw new Exception(e.getMessage());

}

}

 ASPEN Java

Standards and
Guidelines

 Page 44 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Reporting Exceptions:

Report exceptions by an appropriate logging mechanism as early as possible, including at the point of
raise.

14.3 Runtime Exceptions:

Runtime exceptions normally represent either programmatic errors or unexpected, unusual scenarios and
hence must not be absorbed. They should be re-thrown incase they are caught for logging purposes.

14.4 Safety Checks:

Perform safety checks locally by including exception handlers.

14.5 Exception Usage:

Do not use exceptions for frequent, anticipated events. For instance, do not use an exception as some
form of extra value returned by a function (like Value_Not_Found in a search); use a procedure with an
"out" parameter, or introduce a special value meaning Not_Found, or pack the returned type in a record
with a “Not_Found” string.

15. Garbage Collection

Java provides automatic storage management typically using a Garbage Collector, to avoid the safety
problems of explicit deallocation.

15.1 Finalization of class instances

Finalizers provide a chance to free up resources such as file descriptors or operating system graphics
contexts that cannot be freed automatically by an automatic storage manager. The class Object has a
protected method called finalize and other classes can override this. Use this method to clean up any
resources like file descriptors, graphics context etc.

 Example:

protected void finalize() throws Throwable {

 super.finalize();

 ….. Clean up code …

 }

15.2 Null References

When declaring the objects, always initialize the object reference to null.

Example (Correct):
DriverManagerSession drvManager = null;

Example (Incorrect):
SecurityManagerSession secManager;

 ASPEN Java

Standards and
Guidelines

 Page 45 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

15.3 String Concatenation

Avoid string concatenation using “+=” operator. Because, Strings are immutable objects, String
concatenation results in temporary object creation that increases Java garbage collection and
consequently CPU utilization as well. Use the java.lang.StringBuffer object for string
concatenation.

Example:

 Example (Incorrect):
 String workString = new workString();

 final static String TYPICAL_STRING = “AAA”;

 for (int i = 0;i < 100;i++) {

 workString += TYPICAL_STRING;

 }

 Example (Correct):
 final static SIZE = 2000;

 final static String TYPICAL_STRING = “AAA”;

 StringBuffer workBuffer = new StringBuffer(SIZE);

 for (int i = 0;i < 100; i++){

 workBuffer.append(TYPICAL_STRING);

 }

 String returnValue = workBuffer.toString();

15.4 Release Resources.

Release all the system resources after their usage. The resources acquired by a method should
be released in its ‘finally’ block. Resources can be any, which are not, released automatically like
database Connections, Statements, ReultSets, FileDescriptors, Sockets, GraphicContexts etc.

16. Portability

The following is the list of guidelines addressing some of the portability issues:
➢ Do not include or import packages that are proprietary to a specific platform.

➢ Do not hard code the Initial Context Factory class name inside EJB code, as they are proprietary
to a specific platform. Access them through an environment variable or as part of deployment
descriptor.

➢ Use simple JavaBeans instead of Access beans while coding EJBs.

17. Reuse

Code reuse is one of the best ways to maintain a large-scale robust application. To build a robust
application that is easy to use and maintain, there needs to be common classes or components that
can be reused over and over again.

Here are some of the common guidelines in achieving code reuse:

1. For JDBC connections and connection pooling, use the JDBC framework class and named

Datasources to establish connection to the database.

 ASPEN Java

Standards and
Guidelines

 Page 46 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

2. Use EJB Caching and home object creation object to create and reuse EJB Home objects.

3. While coding JSPs, avoid redundant code by using the page “include” tag.

4. While coding Servlets, use the Framework servlet class as the base class to avoid coding any

commonly invoked methods.

5. Reuse objects that point to resources.

Example (Incorrect):
InitialContext and DataSource should be reused in ConnectionManager.

public Connection getDSConnection(String DATA_SOURCE, String USERID,

String PASSWORD) throws NamingException, SQLException {

 // Create initial context

debug("Check context");

 InitialContext initialContext = new InitialContext(); // Wrong

way always creates a new object

 debug(" Initial Context is obtained.");

 DataSource dataSource =

 (DataSource) initialContext.lookup(DATA_SOURCE);

 debug("Closing InitialContext");

 initialContext.close();

Example (Correct):

 InitialContext initialContext;
public Connection getDSConnection(String DATA_SOURCE, String USERID, String
PASSWORD) throws NamingException, SQLException {
 // Create initial context

debug("Check context");
If (initialContext == null) {

initialContext = new InitialContext(); // Right way, instantiate once and reuse
 }

debug(" Initial Context is obtained.");
 DataSource dataSource =
 (DataSource) initialContext.lookup(DATA_SOURCE);
 debug("Closing InitialContext");

 initialContext.close();

6. Use framework provided utilities instead of creating track specific implementations.

All the features, tools provided by the framework are placed in p:/development/Training.
Every developer has to go through the Developer training and can refer this documentation as
needed.

In addition to this, developers need to attend the developer’s forum in which framework issues
are addressed and new framework features are release.

Example:
Do not use Date manipulation in disparate classes. Instead use framework date manipulation
services like FwCalendar.

18. General Guidelines

 ASPEN Java

Standards and
Guidelines

 Page 47 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

18.1 Programming Conventions

1. Define small classes and small methods.

2. Define subclasses so they may be used anywhere their superclass may be used.

3. Use polymorphism instead of instanceof.

4. Unnecessary global variables in batch programs must be avoided. Most of these variables are

being used as an (wrong) alternative for parameter passing across methods.
Example (Incorrect):
In INGenDlyMAExtract program trgrType is a global variable that is being used for parameter
passing for storeExtHistInfo() method.

5. Encapsulate enumeration as classes.

6. Always construct objects in a valid state.

7. Build concrete classes from native types and other concrete classes.

8. Wrap general-purpose classes that operate on java.lang.Object to provide static type checking.

18.2 Packaging Conventions

1. Isolate volatile classes and interfaces into separate packages.

2. Avoid making packages that are difficult to change dependent on packages that are easy to

change.

3. Place types that are commonly used, changed, and released together, or mutually dependent on

each other, into the same package.

4. Maximize abstraction to maximize stability.

5. Capture high-level design and architecture as stable abstractions organized into stable packages.

18.3 Miscellaneous

1. Narrow accessibility

Declare non-constant fields as private or protected.

2. Use Interfaces

If you conceive of someone implementing a class’s functionality differently, define an interface,
not an abstract class.

3. Array declaration at type

Prefer declaring arrays as Type[] arrayName rather than Type arrayName[].

 ASPEN Java

Standards and
Guidelines

 Page 48 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4. Remove System.out.println

Remove System.out.println debug statements before checking in the file, Use Debug or Timer
framework classes for debugging purpose.

5. Remove exception.printStackTrace

Remove exception stack trace statements before checking in the file.

6. Remove all unused attributes, variables and methods

This will increase the memory footprint and is also maintenance overhead.

7. Use constant literals

Do not use any String or numeric literals in the program. Instead declare them as final variables in
an interface or in any related class and use them through out the program or application.

Example (Incorrect):

 File file = new File(“\dir1\dir2\file.ext”);

Example (Correct):
 //CUR_FILE is a static final attribute in IConstants interface.
File file = new File(Iconstants.CUR_FILE);

8. Use Java Calendar instead of Date

1. Framework provides FwCalendar that should be used by application for date

manipulation. Note that java.util.Date is deprecated.

9. Override both hashcode and equals if either of them is overriden

 If either hashcode or equals is being overridden then the other should also be overridden.

Example:
1. All DAOs have equals method and there is no corresponding hashcode method.
2. VAlTdalertsEntityEJBBean has the following code

public int hashCode() {
 return super.hashCode();

}
 public boolean equals(Object obj) {

 if (obj == this) return true;
 if (obj instanceof VAlTdalertsEntityEJBBean) {

 VAlTdalertsEntityEJBBean otherKey = (VAlTdalertsEntityEJBBean)obj;
 return super.equals(obj);
 }
 return false;
}

10. Use object.equals(object) instead of ==

Do not compare objects using == or !=, instead use the equals method of the object. Even though
== or != may work for Strings in certain cases, even there use equals instead in order to
standardize code.

 ASPEN Java

Standards and
Guidelines

 Page 49 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Example (Incorrect):
In PageregistrationBO.java

 String returnValue = "";
 returnValue = validate(conn, newCollection, ACTION_INSERT);

if(returnValue==""||returnValue==null&&classMessage=="") returnValue=classMessage;

ReferenceTableReader.java
 if (refvalue!=null && refvalue!=""){

Example (Correct):
String returnValue;

 returnValue = validate(conn, newCollection, ACTION_INSERT);

if(returnValue.equals(“”)||returnValue==null&&classMessage.equals(""))
returnValue=classMessage;
EntityLoaderBase.java
Long hohIndv = null;

 while (it.hasNext()){
 hohIndv = (Long)it.next();

 }
 if(hohIndv == indivId){
 edgIndividual.populate("HeadOfHouseHold",
 ef.getRObject(true));

 }
Instead use the following implementation:

 if(hohIndv.equals(indvId)

11. Do not change the PK of the cargo.

This will give unpredictable results if the cargo has been put into a Map as a key.

12. Do not initialize variables unnecessarily

Example:
PageregistrationBO.java
String returnValue = ""; //No need to initialize this
returnValue = validate(conn, newCollection, ACTION_INSERT);
if(returnValue==""||returnValue==null&&classMessage=="") returnValue=classMessage;

13. Do proper null check

Check for null before checking for a value.

Example (Incorrect):
PageRegistrationBO.java
String returnValue = "";

 returnValue = validate(conn, newCollection, ACTION_INSERT);
if(returnValue==""||returnValue==null&&classMessage=="") returnValue=classMessage;

Example (Correct):
if(returnValue==null||(returnValue==””&&classMessage==""))

 ASPEN Java

Standards and
Guidelines

 Page 50 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

14. Use static inner class

Use static inner classes where the inner class is not referring to the instance. Non-static inner
classes make the instance bigger.

15. Constants should be static final

Constants should be static final. The access should be restricted to private if it is being used by
only the owner class.

Example (Incorrect):
In FileAssembler.FORWARD_SLASH

private final char FORWARD_SLASH = '/';

Example (Correct):
In FileAssembler.FORWARD_SLASH
private static final char FORWARD_SLASH = '/';

16. Use meaningful method name.

Use meaningful method names and avoid naming the methods same as Constructor.

Example:
In DIOverrideBO.java
private void DIOverrideBO(){}

17. Do not overload equals

Example:
Rulesengine.genericentity.Entity.equals(Entity e) is a confusing usage. Equals should
either have the same signature as equals defined in the Object class or the method
should be named differently.

18. Remove dead code

Do not keep unused private methods.

Example:
e.g. getConvertDates() in MuBatchEdbc

19. Return zero-length array instead of null

Return zero length arrays instead of nulls, avoids extra check in caller.

Example (Incorrect):
 private EdEligibilityCargo[] getCurrEdg(..){

 EdEligibilityCargo[] baseEdEligibilityCargo = null;
 …
 return null;//returns null

 …
 }

Example (Correct):
private EdEligibilityCargo[] getCurrEdg(..){

 ASPEN Java

Standards and
Guidelines

 Page 51 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 EdEligibilityCargo[] baseEdEligibilityCargo = new EdEligibilityCargo[0];
 …

 return baseEdEligibilityCargo;//returns zero-length array
 …

 }

20. Do proper null check

Use factory methods to create new objects. (Guidelines)

Example (Incorrect):

 Customer(int acustomerID){

customerID=acustomerID;
 }

Example (Correct):
 Customer create (int acustomerID){

return new Customer(int acustomerID);
 }

21. Class variables not written into

Check class variables that are never set (where only the default value is used).
Normally this is an error or an unused field.

22. Use StringBuffer instead of Strings

Batch programs should use StringBuffer instead of Strings. Strings have a special status in Java.
They are the only objects for which the plus operator ‘+’ is overloaded. Each time you
concatenate strings using the plus operator, be wary—behind the scenes, new String and
StringBuffer objects are probably being created for you. String and StringBuffer share a curious
relationship. When you can create and modify a StringBuffer, the actual work is performed on an
internal character array. When you create a String from the StringBuffer, it points to the same
character array. Everything is fine so far, right? But if you further modify the StringBuffer, it
cleverly creates a new character array, a copy of the old one. Thus, while StringBuffer is
generally an efficient way to create Strings, it is not always obvious exactly when new objects are
created. The moral of the story is that every place you see string concatenation, there may be
new objects being created. If you’re assembling strings inside a loop, you should think about a
different approach, possibly involving StringBuffer.

23. Avoid synchronization

Do not use synchronized access. If an exception is required then it should be approved by the
App. Architect. “Copy on Write” design pattern can be used instead of synchronized.

Example:
DcCommonBO has the following method
 public static synchronized void updateCaseDataChange(…..

 ASPEN Java

Standards and
Guidelines

 Page 52 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

24. Classes without state should be static

If there are no instance level variables in the class, then all methods should be static or the class
should be singleton.

Example:
DcBusinessRulesBO gets created on every click, yet does not have useful member
methods. This could have been a static class or a singleton class.

25. Avoid synchronization in singleton’s getInstance

The getInstance() method of singleton classes should be improved such that it does not hit
synchronization block on every access.

Example (Incorrect):
private static XYZ xyz = null;

 public static synchronized XYZ getInstance(){
 if (xyz==null){
 xyz = new XYZ();

 }
 return xyz;

 }

Example (Correct):
 private static XYZ xyz = new XYZ();

 public static XYZ getInstance(){
return xyz;

}

26. Use constant literals

Do not hardcode strings.

Example (Incorrect):
restart = (Map)attributes.get("restart"); “restart” should instead be a declared as a constant.

27. Remove test classes from build

Any test classes or test methods should be removed from ClearCase.

Example:
BatchTestNew

28. Make logging conditional

All log and debugs should be preceded by if (isLoggable()). All logs except errors should not
make expensive calls and string concats, when not enabled. Also, should evaluate when logs are
disabled, how time is wasted in calculating log message values then thrown away.

Example (Incorrect):
The following is an expensive call.
debug("Lost Memory = " + (memoryAtStart - Runtime.getRuntime().freeMemory()));

 ASPEN Java

Standards and
Guidelines

 Page 53 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Example (Correct):
private static ILog getLogger() {

 if (logger == null) {
 logger = (ILog)FwServiceFactory.getInstance().create(ILog.class);
 }
 return logger;

 }

if (getLogger().isLoggable(null,ILog.DEBUG)) {
debug("Lost Memory = " + (memoryAtStart - Runtime.getRuntime().freeMemory()));

29. Do not use threading

Do not use threading explicitly until there is a good reason for that. Do not have Thread.sleep in
the code to take care of synchronization issues.

Example:
InSASTriggerProcessorBO.isTriggerinDB does a Thread.sleep(10000) if trigger is not found.
While this could have some business reasoning, the question is- what if a lot of triggers are
not found in DB.

30. Use shorcircuit logical operands

Don’t use & when && was intended- know your operators.

Example:
SecurityFunctionsBO.java

 if (cargos != null & cargos.length > 0) {
 cargoList.add(cargos[0]);

 }

31. Don’t flip || and &&

Check whether || is being used when && was intended.

Example (Incorrect):
AuTxnLogObjectsDAO.java has if(function!=null|| function.trim().length()!=0)

Example (Correct):
if(function!=null && function.trim().length()!=0)

32. Do correct synchronization

Java is multi threaded, be aware of atomicity requirement e.g the code below is trying to
incorrectly synchronize between two threads:

 if (sessions.get(sessionId) != null) {

 if(uniqueId.equals(
(String)sessions.get(sessionId))) {

 sameRequest = true;
 } else {
 sameRequest = false;
 }

 ASPEN Java

Standards and
Guidelines

 Page 54 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 while (sessions.get(sessionId) != null) {
 response =

(Map) sessions.get(sessionId + "Response");
 }
 }

 if (!sameRequest) {

throw new FWDuplicateRequestException("Duplicate Thread",
seResponse);

 }

 } else {
 sessions.put(sessionId, uniqueId);
 response = delegate(_request);
 sessions.put(sessionId + "Response", response);
 }

33. Do not create unnecessary String objects

Use String x=”x” instead of String x=new String(“x”)

Example (Incorrect):
DIEDGSummarySessionEJBBean does the following
eRslt.setParamters(new String(),new String(), instead it could have sent in nulls.

Example (Correct):
eRslT.setParamters(“”,””);

Example (Incorrect):
QcLtcDataExtractBo has lines like String tempActivityType = new String(); This is
unnecessary.

Example (Incorrect):
UserBO.java has

 parms[0] = new String(aUserInfo.getUserId());

Example (Correct):
 parms[0] = aUserInfo.getUserId();

34. Object instantiation in loop

Check for any object instantiated in a loop. If you’re creating a new object inside a loop, it should
be setting off alarm bells in your head. Every time you create an object (using new), memory is
allocated. Allocating memory takes time. Worse, objects created at the beginning of a loop are
likely to fall out of scope by the end of the loop, which means that each iteration through the loop
pushes the runtime system closer to running the garbage collector.

Example (Incorrect):
// Set up the inputs and results arrays.
Object[] inputs = new Object[0];
int[] results = new int[0];

 ASPEN Java

Standards and
Guidelines

 Page 55 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

// Process each input to calculate a result.
int length = inputs.length;
for (int i = 0; i < length; i++) {

Processor p = new Processor(inputs[i]);
results[i] = p.calculateResult();

}

Creating objects in a loop imposes a double penalty in terms of performance. You pay a price
up front when the object is first created, then later when the object is garbage collected. You
can almost always restructure your code to avoid this problem. For example, instead of
creating a new Processor for each input, you could do something like this:

Example (Correct):
// Set up the inputs and results arrays.
Object[] inputs = new Object[0];
int[] results = new int[0];

// Process each input to calculate a result.
int length = inputs.length;
Processor p = new Processor();

for (int i = 0; i < length; i++) {

p.setInput(inputs[i]);
results[i] = p.calculateResult();

}

35. Do not put unnecessary code in finally

Do not put unnecessary code in finally.

Example (Incorrect):
In DcIndvMiscInfoCargo the following code has unnecessary code in its finally block:

public DcIndvMiscInfoCargo[] getLoopCount(VDcCaseIndvDetailsCollection

caseIndvCollection)throws Exception {
 DcIndvMiscInfoCargo[] cargoArray = null;
 long[] caseIndvArray = null;
 Object[] methodArgs = null;
 DcIndvMiscInfoCollection standardMedAllowCollection = null;
 int size = 0;
 try {
...
 return cargoArray;
 } catch (Exception te) {
 Debug.println(
"***** Exception occurred in getLoopCount() from DcStandardMedicalAllowanceBO *****");
 throw te;
 } finally {
 cargoArray = null;
 caseIndvArray = null;
 caseIndvCollection = null;
 methodArgs = null;
 size = 0;

 ASPEN Java

Standards and
Guidelines

 Page 56 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 standardMedAllowCollection = null;
 }
 }

Note that all variables that are having their references removed are all local variables that anyway
are going out of scope as the method ends.

36. Use wait instead of spinning for lock

Do not use spin loops – use wait and wakeup

Example (Incorrect):
 if (sessions.get(sessionId) != null) {

 if(uniqueId.equals(
(String)sessions.get(sessionId))) {

 sameRequest = true;
 } else {
 sameRequest = false;
 }

 while (sessions.get(sessionId) != null) {
 response =

(Map) sessions.get(sessionId + "Response");
 }
 }

 if (!sameRequest) {

throw new FWDuplicateRequestException("Duplicate Thread",
seResponse);

 }

 } else {
 sessions.put(sessionId, uniqueId);
 response = delegate(_request);
 sessions.put(sessionId + "Response", response);
 }

37. Do not check the same conditions redundantly

Example (Incorrect):
 If(pageid != null && condition1) {

 // code body 1
}

 If(pageid != null && condition2) {
 // code body 2

 }

 Example (Correct):
 if(pageid != null) {

 if(condition1) {
 // code body 1

 }
if(condition2) {

 // code body 2

 ASPEN Java

Standards and
Guidelines

 Page 57 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

 }
 }

38. Avoid code duplication

If a copy and paste of code is done over and over again then consider changing that piece of
code to an abstract class or a utility method, which takes in an interface.
To filter data in EDBC by affectivity or by indiv there is a different method for each table.
getEdIndvRscBudgetCargoInfoMonthlyHM(AbstractCargo) and
getEdIndvTanfBudgetCargoInfoMonthlyHM(AbstractCargo) do the same thing. But since they
get the indiv_id from two different cargos they need these two methods for typecasting. The
solving of this would need design change in the cargos such that there is another hierarchy
after AbstractCargo that will abstract for similar cargos. But while filtering for affectivity time
detDcMedicareClaimInfoMonthlyHM and detDcCaseIndividualInfoMonthlyHM both of them
are just filtering for affectivity periods, and can use the abstraction provided by
IHistoryType2ValueObject:

Example:
public interface IHistoryType2ValueObject {
 public java.sql.Timestamp getEffBeginDt();
 public java.sql.Timestamp getEffEndDt();
}
public class DcCaseIndividualCargo extends extends IHistoryType2ValueObject
DcCaseIndividualCargo[] arrDcCaseIndividualCargo = new DcCaseIndividualCargo[rows];
tsEffBegDt = arrDcCaseIndividualCargo[i].getEffBeginDt();
tsEffEndDt = arrDcCaseIndividualCargo[i].getEffEndDt();

39. Use primitive variables

Don’t use objects of primitive variables like bolean, int, long etc except for when it is needed
to put it as an object in heap-space based collection like Hashmap.

Example (Incorrect):

in SeRoleBO.java(586) Boolean is used as follows:
 Boolean updated = new Boolean(false);

Example (Correct):
Instead use Boolean.valueof() instead or declare Constants for Boolean TRUE and FALSE and
reuse the constants where Boolean value is needed.

40. Avoid redundant operations

Example:
Put in hashmap overrides the value, you do not need to remove and put.
DcDriverSessionEJBBean.setInSessionInfo() and setInRequestInfo() updates HashMap
objects, but does this by removing the key and then putting in a value for that key. This is
redundant putting a value will replace the value, so there is no need to remove:

Example (Incorrect):
private void setInRequestInfo() throws Exception {

this.request.remove(DcConstants.ARDCMODE); //Wrong, statement not needed
this.request.put(DcConstants.ARDCMODE, arDcMode);
this.request.remove(DcConstants.MODCMODE); //Wrong, statement not needed
this.request.put(DcConstants.MODCMODE, DcConstants.DCMODE);

 ASPEN Java

Standards and
Guidelines

 Page 58 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

this.request.remove(DcDriverConstants.CASE_NUMBER); //Wrong, statement not
needed
this.request.put(DcDriverConstants.CASE_NUMBER, caseNumber);
this.request.remove(DcDriverConstants.APPLICATION_NUMBER); //Wrong, statement
not needed
this.request.put(DcDriverConstants.APPLICATION_NUMBER, applicationNumber);

 Example (Correct):
 private void setInRequestInfo() throws Exception {
 this.request.put(DcConstants.ARDCMODE, arDcMode);

this.request.put(DcConstants.MODCMODE, DcConstants.DCMODE);
this.request.put(DcDriverConstants.CASE_NUMBER, caseNumber);
this.request.put(DcDriverConstants.APPLICATION_NUMBER,

applicationNumber);

41. Avoid floating point operations

Do not use float, instead use double. Fewer precision problems happen in case of double.

Example (Incorrect):
DocumentAssembler.getManualPrintString is using float x = 0; instead of double x=0;

42. Don’t use loose objects

If two objects are coupled to each other then it should be encapsulated into a class instead of
logic doing indices-based logic.

Example (Incorrect):
 gpersistencetempptr.value[0] = gpersistencetempptr.value[0] + 1;
 gpersistencetempptr.value[1] = gpersistencetempptr.value[1] + apreparedStatementTime;
 gpersistencetempptr.value[2] = gpersistencetempptr.value[2] + aqueryTime;

Example (Correct):
 Have a class with the required attributes:
 gpersistencetempptr.count = gpersistencetempptr.count+ 1;
 gpersistencetempptr.statementTime = gpersistencetempptr.statementTime
+apreparedStatementTime

gpersistencetempptr.queryTime = gpersistencetempptr.queryTime + aqueryTime;

19. Programming Standards for Performance

1. Do not use Hashtable and Vector classes, unless required. These classes are the synchronized

implementations of data structures. Use the unsynchronized implementations, HashMap and

ArrayList.

2. For sorted lists that are dynamic in nature, use of the TreeMap class is strongly recommended.

This class maintains elements in a sorted order and operations are highly optimized (O(log(n))). If

sorting of the list is not done very often, any other collection class can also be used.

3. Use an iterator interface to manipulate the collections classes that improves readability and

abstracts accessing/modifying algorithms. It is preferred even it means a slight degradation in

performance.

 ASPEN Java

Standards and
Guidelines

 Page 59 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

4. Do not call methods like size or length in the loop header. Instead, store the value in a local

variable and use the variable in the loop header.

Example (Incorrect):
LinkedList linkList = new LinkedList();
for (i = 0; i < linkList.size(); i++)
{

processData((MyBusinessObject)linkList.get(i));
}

Example (Correct):
LinkedList linkList = new LinkedList();
int listSize = linkList.size();
for (i = 0; i < listSize; i++)
{

processData((MyBusinessObject)linkList.get(i));
}

The exception to this rule would be when the loop body is modifying the size of the list.

5. When processing large number of records, do not create new objects. Reuse existing ones. This

improves performance and minimizes memory usage.

Example (Incorrect):
ResultSet resultSet = stmt.executeQuery(query);
while (resultSet.hasNext())
{

MyBusinessObject busObj = new MyBusinessObject();
resultSet.next();
busObj.copyFromResultSet(resultSet);
busObj.processRow();

}

Example (Correct):
ResultSet resultSet = stmt.executeQuery(query);
MyBusinessObject busObj = new MyBusinessObject();
while (resultSet.hasNext())
{

resultSet.next();
busObj.copyFromResultSet(resultSet);
busObj.processRow();
busObj.resetState();

}

6. When concatenating strings, use StringBuffer class instead of String class. This is especially

important when doing string concatenation inside a loop.

7. Do not use the wild card ‘%’ and LIKE operators on primary keys and indexed columns in the

where clauses of SQL statements.

8. Use java primitive data types wherever possible rather than wrapper objects for better

performance (prefer int to Integer).

 ASPEN Java

Standards and
Guidelines

 Page 60 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

9. Cursor leaks occur in DAOs when JDBC resources are not properly released following use.

References to statements and result sets should only be made inside a try block that is concluded

in a finally block. These resources must be closed in the finally block.

20. Glossary

Accessor: Is a member function that either modifies or returns the value of a property, also known as an
access modifier.

Class: A definition, or template, from which objects are instantiated.

Constructor: A method that performs any necessary initialization when an object is created.

Component: A physical and replaceable set of classes that can function independently or act as part of a

framework setup.

EJB: A server side Java architecture that is usually used to handle business logic and data.
Getter: A type of accessor method that returns the value of a property.

HTML: Hypertext markup language, an industry-standard format for creating web pages.

Interface: The definition of a common signature, including both methods and fields, which a class that
implements an interface must support. Interfaces promote polymorphism by composition.

Java: An industry-standard object oriented development language. It is well suited for developing
applications for the Internet and applications that must operate on a wide variety of computing
platforms.
Java Bean: A platform independent component model written in Java.
Javadoc: A utility included in the JDK that processes a Java source code file and produces an
external document, in HTML format, describing the contents of the source code file based on the
documentation comments in the code file.
JDK: The Java Development Kit contains the following;
the Java Compiler, Java Virtual Machine, Java Class Libraries, Java Applet Viewer, Java
Debugger, and other tools.
Local variable: A variable that is defined within the scope of a block, often a method. The scope
of a local variable is the block in which it is defined.
MVC: Model-View-Controller Architecture. An application architecture, which separates the
components of the application: the model represents the business logic or data; the view
represents the user interface and the controller manages user input or, in some cases the
application flow.
Method: A piece of executable code that is associated with a class, or the instances of a class.
Think of a method as the object-oriented equivalent of a function or method.
Mutator: Methods that an object provides to define the interface of its instance variables. The
mutator method used to assign a value to an instance variable is called a setter method.
Private: A class modifier that restricts access to the other classes, sub-classes and classes in the
same packages except for the class itself.
Property: A named value denoting a characteristic of a class.
Protected: A class modifier that restricts the access to other classes except for, the class itself,
subclasses and also all the classes in the same package.
Setter: An accessor member function that sets the value of a field.

 ASPEN Java

Standards and
Guidelines

 Page 61 of 62 New Mexico ASPEN

June 1, 2012 Java Standards and Guidelines

Single-line comments: A Java comment format, adopted from the C/C++ language that is
commonly used for the internal member function documentation of business logic. A single-line
comment is represented by two forward slashes (“//”);
Tags: A convention for marking specified sections of documentation comments that will be
processed by javadoc to produce professional-looking comments. Examples of tags include
@param and @author

 ASPEN Java

Standards and
Guidelines

Appendix A Page 62 of 62 New Mexico ISD2R

March 19, 2011 ASPEN Java Standards and Guidelines

